早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC交于点D,直线y=-12x+b过点D,与线段AB相交于点F,

题目详情
如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).
(1)求反比例函数的解析式;
(2)反比例函数的图象与线段BC交于点D,直线 y=-
1
2
x+b 过点D,与线段AB相交于点F,求点F的坐标;
(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.
▼优质解答
答案和解析
(1)设反比例函数的解析式y=
k
x

∵反比例函数的图象过点E(3,4),
∴4=
k
3
,即k=12.
∴反比例函数的解析式y=
12
x


(2)∵正方形AOCB的边长为4,
∴点D的横坐标为4,点F的纵坐标为4.
∵点D在反比例函数的图象上,
∴点D的纵坐标为3,即D(4,3).
∵点D在直线y=-
1
2
x+b上,
∴3=-
1
2
×4+b,解得b=5.
∴直线DF为y=-
1
2
x+5,
将y=4代入y=-
1
2
x+5,得4=-
1
2
x+5,解得x=2.
∴点F的坐标为(2,4).

(3)∠AOF=
1
2
∠EOC.
证明:在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H.
∵AO=CO=4,∠OAF=∠OCG=90°,AF=CG=2,
∴△OAF≌△OCG(SAS).
∴∠AOF=∠COG.
∵∠EGB=∠HGC,∠B=∠GCH=90°,BG=CG=2,
∴△EGB≌△HGC(ASA).
∴EG=HG.
设直线EG:y=mx+n,
∵E(3,4),G(4,2),
4=3m+n
2=4m+n
,解得,
m=-2
n=10

∴直线EG:y=-2x+10.
令y=-2x+10=0,得x=5.
∴H(5,0),OH=5.
在Rt△AOE中,AO=4,AE=3,根据勾股定理得OE=5.
∴OH=OE.
∴OG是等腰三角形底边EH上的中线.
∴OG是等腰三角形顶角的平分线.
∴∠EOG=∠GOH.
∴∠EOG=∠GOC=∠AOF,即∠AOF=
1
2
∠EOC.