早教吧 育儿知识 作业答案 考试题库 百科 知识分享

待定系数法求极限已知limn—>∞(6An-Bn)=1limn—>∞(3An+4Bn)=8求limn—>∞(3An+Bn)已知limn—>∞(An-Bn)=2limn—>∞(2An+5Bn)=8求limn—>∞(3An+2Bn)

题目详情
待定系数法求极限
已知lim n—>∞ (6An-Bn)=1 lim n—>∞ (3An+4Bn)=8
求lim n—>∞ (3An+Bn)
已知lim n—>∞ (An-Bn)=2 lim n—>∞ (2An+5Bn)=8
求lim n—>∞ (3An+2Bn)
▼优质解答
答案和解析
①结果为3
②结果为62/7
①设
lim (n→∞)An=x
lim (n→∞)Bn=y

lim (n→∞)(6An-Bn)
=6x-y
lim (n→∞)(3An+4Bn)
=3x+4y
lim(n→∞)(3An+Bn)=3x+y
∴6x-y=13
x+4y=8
解得:
x=4/9,y=5/3
∴llim(n→∞)(3An+Bn)
= 3*4/9+5/3
=3
②同①可得
x=18/4
y=4/7
lim (n→∞)(3An+2Bn)
=3x+2y
=62/7