早教吧作业答案频道 -->数学-->
已知:在△ABC中.AB、AC的垂直平分线分别交BC于点E.F.(1)如图1.∠B=∠C=30°.求∠EAF的度数.(2)如图2.AB≠AC.且90°<∠BAC<180°①若∠BAC=140°.则∠EAF=°:若∠BAC=n&de
题目详情
已知:在△ABC中.AB、AC的垂直平分线分别交BC于点E.F.
(1)如图1.∠B=∠C=30°.求∠EAF的度数.
(2)如图2.AB≠AC.且90°<∠BAC<180°
①若∠BAC=140°.则∠EAF=___°:若∠BAC=n°.则∠EAF=___
②当∠BAC=___°时.AE⊥AF.
③若BC=a.则△AEF的周长为___.
(1)如图1.∠B=∠C=30°.求∠EAF的度数.
(2)如图2.AB≠AC.且90°<∠BAC<180°
①若∠BAC=140°.则∠EAF=___°:若∠BAC=n°.则∠EAF=___
②当∠BAC=___°时.AE⊥AF.
③若BC=a.则△AEF的周长为___.
▼优质解答
答案和解析
(1)∵∠B=∠C=30°,
∴∠BAC=180°-30°-30°=120°.
∵AB、AC的垂直平分线分别交BC于点E、F,
∴∠B=∠BAE=30°,∠C=∠CAF=30°,
∴∠EAF=120°-30°-30°=60°;
(2)①∵∠BAC=140°,
∴∠B+∠C=180°-140°=40°.
∵AB、AC的垂直平分线分别交BC于点E,F,
∴∠BAE+∠CAF=40°,
∴∠EAF=140°-40°=100°.
同理,∵∠BAC=n°,
∴∠B+∠C=180°-n°.
∵AB、AC的垂直平分线分别交BC于点E,F,
∴∠BAE+∠CAF=180°-n°,
∴∠EAF=140°-180°+n°=(n-40)°.
故答案为:100,(n-40)°;
②∵AE⊥AF,
∴∠EAF=90°,
∴∠B+∠C+∠BAE+∠CAF=180°-90°=90°.
∵AB、AC的垂直平分线分别交BC于点E,F,
∴∠B=∠BAE,∠C=∠CAF,
∴∠BAE+∠CAF=45°,
∴∠BAC=45°+90°=135°.
故答案为:135;
③∵AB、AC的垂直平分线分别交BC于点E、F,
∴AE=BE,AF=CF,
∴△AEF的周长=AE+AF+EF=BE+CF+EF=BC=a.
故答案为:a.
∴∠BAC=180°-30°-30°=120°.
∵AB、AC的垂直平分线分别交BC于点E、F,
∴∠B=∠BAE=30°,∠C=∠CAF=30°,
∴∠EAF=120°-30°-30°=60°;
(2)①∵∠BAC=140°,
∴∠B+∠C=180°-140°=40°.
∵AB、AC的垂直平分线分别交BC于点E,F,
∴∠BAE+∠CAF=40°,
∴∠EAF=140°-40°=100°.
同理,∵∠BAC=n°,
∴∠B+∠C=180°-n°.
∵AB、AC的垂直平分线分别交BC于点E,F,
∴∠BAE+∠CAF=180°-n°,
∴∠EAF=140°-180°+n°=(n-40)°.
故答案为:100,(n-40)°;
②∵AE⊥AF,
∴∠EAF=90°,
∴∠B+∠C+∠BAE+∠CAF=180°-90°=90°.
∵AB、AC的垂直平分线分别交BC于点E,F,
∴∠B=∠BAE,∠C=∠CAF,
∴∠BAE+∠CAF=45°,
∴∠BAC=45°+90°=135°.
故答案为:135;
③∵AB、AC的垂直平分线分别交BC于点E、F,
∴AE=BE,AF=CF,
∴△AEF的周长=AE+AF+EF=BE+CF+EF=BC=a.
故答案为:a.
看了 已知:在△ABC中.AB、A...的网友还看了以下:
设A={x|x=2^a乘3^被他,a,被他属于Z且a大于等于0,被他大于等于0},B={x|1小于 2020-04-06 …
下列结论:①若关于x的方程ax+b=0(a≠0)的解是x=1,则a+b=0;②若b=2a,则关于x 2020-05-13 …
线性代数中,设AB均为n阶非零矩阵,且AB=0,则A和B的秩 都小于零 答案上说由题可知线性代数中 2020-05-16 …
已知p^2-p-1=0,1-q-q^2=0,且pq不等于1.则pq+1/q1-q-q^2=0因为q 2020-06-07 …
设定义域为R的函数f(x)=|lg|x−1||,x≠10,x=1,则关于x的方程f2(x)+bf( 2020-06-12 …
不等式,在线等用大于或小于号填空若A大于B,则2A+1()2B+1若-0.25Y<3,则Y()-1 2020-08-01 …
命题:“当abc=0时,a=0或b=0或c=0”的逆否命题为()A.若a=0或b=0或c=0,则a 2020-08-02 …
设A,B为n阶矩阵,则下列结论中正确的是A:若AB=0,则BA=0B:若AB=0,且B≠0,则IAI 2020-11-02 …
设A为n阶矩阵,下列关于矩阵乘积的说法中正确的有()A.若A2=A,则有A=E或A=0B.若A2=A 2020-12-27 …
1已知关于x的方程x^2+bx+a=0有一个根是-a(a不等于0)则a-b的值为2方程(k-1)x^ 2020-12-31 …