早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.

题目详情
作业帮如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.
(1)求证:BE=CE.
(2)求∠BEC的度数.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD为正方形
∴AB=AD=CD,∠BAD=∠ADC=90°
∵三角形ADE为正三角形
∴AE=AD=DE,∠EAD=∠EDA=60°
∴∠BAE=∠CDE=150°
在△BAE和△CDE中
AB=CD
∠BAE=∠CDE
AE=DE

∴△BAE≌△CDE
∴BE=CE;    
(2)∵AB=AD,AD=AE,
∴AB=AE,
∴∠ABE=∠AEB,
又∵∠BAE=150°,
∴∠ABE=∠AEB=15°,
同理:∠CED=15°
∴∠BEC=60°-15°×2=30°.