早教吧 育儿知识 作业答案 考试题库 百科 知识分享

探索三角形的内角与外角平分线:(1)已知,如图1,在△ABC中,两内角平分线,BO平分∠ABC,CO平分∠ACB,若∠A=50°,则∠BOC=;此时∠A与∠BOC有怎样的关系,试说明理由.(2)已知,

题目详情
探索三角形的内角与外角平分线:
(1)已知,如图1,在△ABC中,两内角平分线,BO平分∠ABC,CO平分∠ACB,若∠A=50°,则∠BOC=______;此时∠A与∠BOC有怎样的关系,试说明理由.
(2)已知,如图2,在△ABC中,一内角平分线BO平分∠ABC,一外角平分线CO平分∠ACE,若∠A=50°,则∠BOC=______;此时∠A与∠BOC有怎样的关系,试说明理由.
(3)已知,如图3,在△ABC中,∠ABC、∠ACB的外角平分线OB、OC相交于点O,若∠A=50°,则∠BOC=______;此时∠A与∠BOC有怎样的关系(不需说明理由)

图1中:关系式:
∠BOC=90°+
1
2
∠A
∠BOC=90°+
1
2
∠A
,理由:______;
图2中:关系式:
∠BOC=
1
2
∠A
∠BOC=
1
2
∠A
,理由:______;
图3中:关系式:
∠BOC=90°-
1
2
∠A
∠BOC=90°-
1
2
∠A
,理由:______.
▼优质解答
答案和解析
(1)∠BOC=90°+
1
2
∠A.理由如下:
∵∠BOC=180°-∠OBC-∠OCB,
∴2∠BOC=360°-2∠OBC-2∠OCB,
而BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴2∠BOC=360°-(∠ABC+∠ACB),
∵∠ABC+∠ACB=180°-∠A,
∴2∠BOC=180°+∠A,
∴∠BOC=90°+
1
2
∠A.
当∠A=50°,∠BOC=115°;

(2)∠BOC=
1
2
∠A.理由如下:
∵∠OCE=∠BOC+∠OBC,∠ACE=∠ABC+∠A,
而BO平分∠ABC,CO平分∠ACE,
∴∠ACE=2∠OCE,∠ABC=2∠OBC,
∴2∠BOC+2∠OBC=∠ABC+∠A,
∴2∠BOC=∠A,
即∠BOC=
1
2
∠A.
当∠A=50°,∠BOC=25°;

(3)∠BOC=90°-
1
2
∠A.
当∠A=50°,∠BOC=65°.
看了 探索三角形的内角与外角平分线...的网友还看了以下: