早教吧作业答案频道 -->数学-->
(1998•台州)如图,ABCD为正方形,E、F分别在BC、CD上,且△AEF为正三角形,四边形A′B′C′D′为△AEF的内接正方形,△A′E′F′为正方形A′B′C′D′的内接正三角形.(1)试猜想与的大
题目详情
(1998•台州)如图,ABCD为正方形,E、F分别在BC、CD上,且△AEF为正三角形,四边形A′B′C′D′为△AEF的内接正方形,△A′E′F′为正方形A′B′C′D′的内接正三角形.
(1)试猜想与的大小关系,并证明你的结论;
(2)求的值.
(1)试猜想与的大小关系,并证明你的结论;
(2)求的值.
▼优质解答
答案和解析
(1)由于所有的正方形都相似,所有的等边三角形也都相似,而相似三角形面积的比等于相似比的平方,所以只需比较与的大小.
(2)由于正△AEF既是正方形ABCD的内接正三角形,同时四边形A′B′C′D′又为△AEF的内接正方形,所以将AE作为中间量,求出A′B′:AB的值.
【解析】
(1)相等.
∵正方形ABCD和等边三角形AEF都是轴对称图形,直线AC是它的公共对称轴,
∴△ABE≌△ADF,
∴∠BAE=∠DAF,
又∵∠BAE+∠DAF+∠EAF=90°,∠EAF=60°,
∴∠BAE=15°,
∴AE=,
同理,A′E′=,
∴=,
∵所有的正方形都相似,所有的等边三角形也都相似,而相似三角形面积的比等于相似比的平方,
∴=,=,
∴=;
(2)由(1)知△ABE≌△ADF,
∴BE=DF,
∴CE=CF,
设正方形ABCD的边长是a,等边三角形AEF边长为x,
∵CE2+CF2=x2,∴CE=x,
∴BE=a-x,
∵x2=(a-x )2+a2,
∴x2+2ax-4a2=0,
舍去负根,得x=(-)a,
∴AE=(-)AB,
设正方形A′B′C′D′的边长是y,由于△A′B′E≌△D′C′F,
∴B′E=C′F=(x-y),
在△A′B′E中,∠A′B′E=90°,∠B′A′E=30°,
∴B′E:A′B′=(x-y):y=tan30°=:3,
∴y=(2-3)x,
∴A′B′=(2-3)AE,
∴===9-5,
∴=(9-5)2=312-180.
(2)由于正△AEF既是正方形ABCD的内接正三角形,同时四边形A′B′C′D′又为△AEF的内接正方形,所以将AE作为中间量,求出A′B′:AB的值.
【解析】
(1)相等.
∵正方形ABCD和等边三角形AEF都是轴对称图形,直线AC是它的公共对称轴,
∴△ABE≌△ADF,
∴∠BAE=∠DAF,
又∵∠BAE+∠DAF+∠EAF=90°,∠EAF=60°,
∴∠BAE=15°,
∴AE=,
同理,A′E′=,
∴=,
∵所有的正方形都相似,所有的等边三角形也都相似,而相似三角形面积的比等于相似比的平方,
∴=,=,
∴=;
(2)由(1)知△ABE≌△ADF,
∴BE=DF,
∴CE=CF,
设正方形ABCD的边长是a,等边三角形AEF边长为x,
∵CE2+CF2=x2,∴CE=x,
∴BE=a-x,
∵x2=(a-x )2+a2,
∴x2+2ax-4a2=0,
舍去负根,得x=(-)a,
∴AE=(-)AB,
设正方形A′B′C′D′的边长是y,由于△A′B′E≌△D′C′F,
∴B′E=C′F=(x-y),
在△A′B′E中,∠A′B′E=90°,∠B′A′E=30°,
∴B′E:A′B′=(x-y):y=tan30°=:3,
∴y=(2-3)x,
∴A′B′=(2-3)AE,
∴===9-5,
∴=(9-5)2=312-180.
看了 (1998•台州)如图,AB...的网友还看了以下:
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
1、已知a,b,c互不相等求2a-b-c/(a-b)(b-c)+2b-c-a/(b-c)(b-a) 2020-05-16 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
初中数学c/(c-b)=-c(a-b)/(b-c)(a-b)c/(c-b)=-c(a-b)/(b- 2020-06-06 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
在△ABC中,∠A∠B,∠C的对边分别为a,b,c,且aˆ2=(b+c)(b-c),则()A.∠A 2020-07-09 …
1.已知a,b,c∈R.a+b+c=1a²+b²+c²=1/2求证c≥02(1)已知a,c是正实数 2020-07-14 …
下列能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠C=∠C′B.∠B 2020-07-14 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
已知a、b、c满足a<b<c,ab+bc+ac=0,abc=1,则()A.|a+b|>|c|B.|a 2020-11-01 …