早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于E,交直线AC于点F.(1)当点P在线段AB上时,(如图1)求证:PA•PB=PE•PF.(2)在图2

题目详情
已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于E,交直线AC于点F.
(1)当点P在线段AB上时,(如图1)求证:PA•PB=PE•PF.
(2)在图2中画出当点P在线段AB的延长线上时,(1)中的结论是否仍然成立?如果成立,请证明,如果不成立,请说明理由.
▼优质解答
答案和解析
(1)证明:∵BT为切线,BA为弦.
∴∠ABE=∠C,∠APF=∠EPB.
又∵EF∥BC,
∴∠C=∠AFP,∴∠ABE=∠AFP.
∴△APF∽△EPB,
PA
PE
PF
PB

即PA•PB=PE•PF.

(2)

结论仍然成立.
证明:∵BT为切线,BC为弦,
∴∠CBE=∠A.
∵PF∥BC,
∴∠CBE=∠PEB.
∴∠PEB=∠A.
又∠EPB=∠APF,
∴△APF∽△EPB,
PA
PE
PF
PB

即PA•PB=PE•PF.