早教吧作业答案频道 -->其他-->
模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA.模型应用:(1)已知直线l1:y=43x+4与y轴交与A点,将直线l1绕着
题目详情
模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.
求证:△BEC≌△CDA.
模型应用:
(1)已知直线l1:y=
x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.
(2)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x-6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.
求证:△BEC≌△CDA.
模型应用:
(1)已知直线l1:y=
4 |
3 |
(2)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x-6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.
▼优质解答
答案和解析
(1)证明:∵△ABC为等腰直角三角形,
∴CB=CA,
又∵AD⊥CD,BE⊥EC,
∴∠D=∠E=90°,∠ACD+∠BCE=180°-90°=90°,
又∵∠EBC+∠BCE=90°,
∴∠ACD=∠EBC,
在△ACD与△CBE中,
,
∴△ACD≌△EBC(AAS);
(2)过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,如图1,
∵∠BAC=45°,
∴△ABC为等腰Rt△,
由(1)可知:△CBD≌△BAO,
∴BD=AO,CD=OB,
∵直线l1:y=
x+4,
∴A(0,4),B(-3,0),
∴BD=AO=4.CD=OB=3,
∴OD=4+3=7,
∴C(-7,3),
设l2的解析式为y=kx+b(k≠0),
∴
,
∴
,
∴l2的解析式:y=
x+4;
(3)当点D位于直线y=2x-6上时,分两种情况:
①点D为直角顶点,分两种情况:
当点D在矩形AOCB的内部时,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,2x-6);
则OE=2x-6,AE=6-(2x-6)=12-2x,DF=EF-DE=8-x;
则△ADE≌△DPF,得DF=AE,即:
12-2x=8-x,x=4;
∴D(4,2);
当点D在矩形AOCB的外部时,设D(x,2x-6);
则OE=2x-6,AE=OE-OA=2x-6-6=2x-12,DF=EF-DE=8-x;
同1可知:△ADE≌△DPF,
∴AE=DF,即:2x-12=8-x,x=
∴CB=CA,
又∵AD⊥CD,BE⊥EC,
∴∠D=∠E=90°,∠ACD+∠BCE=180°-90°=90°,
又∵∠EBC+∠BCE=90°,
∴∠ACD=∠EBC,
在△ACD与△CBE中,
|
∴△ACD≌△EBC(AAS);
(2)过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,如图1,
∵∠BAC=45°,
∴△ABC为等腰Rt△,
由(1)可知:△CBD≌△BAO,
∴BD=AO,CD=OB,
∵直线l1:y=
4 |
3 |
∴A(0,4),B(-3,0),
∴BD=AO=4.CD=OB=3,
∴OD=4+3=7,
∴C(-7,3),
设l2的解析式为y=kx+b(k≠0),
∴
|
∴
|
∴l2的解析式:y=
1 |
7 |
(3)当点D位于直线y=2x-6上时,分两种情况:
①点D为直角顶点,分两种情况:
当点D在矩形AOCB的内部时,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,2x-6);
则OE=2x-6,AE=6-(2x-6)=12-2x,DF=EF-DE=8-x;
则△ADE≌△DPF,得DF=AE,即:
12-2x=8-x,x=4;
∴D(4,2);
当点D在矩形AOCB的外部时,设D(x,2x-6);
则OE=2x-6,AE=OE-OA=2x-6-6=2x-12,DF=EF-DE=8-x;
同1可知:△ADE≌△DPF,
∴AE=DF,即:2x-12=8-x,x=
看了 模型建立:如图1,等腰直角三...的网友还看了以下:
已知直线l:y=kx+1交曲线C:y=ax^2(a>0)于P、Q两点,M为PQ中点,分别过P、Q两 2020-05-15 …
1.抛物线与x轴的两个交点间的距离是3.且过点(0,-2),(2,0)求解析式2.已知抛物线过(( 2020-05-15 …
已知:如图,在平行四边形ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接B 2020-05-16 …
.已知a和b相距20个图距单位,从杂交后代测得的重组值为19%,则两基因间的双交换值为:A.0.5 2020-05-17 …
已知二次函数y1=ax^2+bx+c与一次函数y2=mx+n的图像相交于点A(-2,-5),B(1 2020-06-06 …
如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B 2020-06-12 …
(1/2)已知函数f(x)=ax^2+1(a>0),g(x)=x^3+bx.若曲线f(x)与曲线g 2020-06-27 …
、已知:▱ABCD中,E是BA边延长线上一点,CE交对角线DB于点G,交AD边于点F.求证:1、已知 2020-12-25 …
已知:▱ABCD中,E是BA边延长线上一点,CE交对角线DB于点G,交AD边于点F.求证:1、已知: 2020-12-25 …
(吉林省2013年高三复习质量监测数学(理)试题)已知互相垂直的两条直线y=kx和y=-kx分别与双 2020-12-31 …