早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在直角坐标系中,A点的坐标为(8,0),B点的坐标为(0,6),动点P以2/秒的速度从点B出发,沿BA向点A移动,同时动点Q以1/秒的速度从点A出发,沿AO向点O移动,设P、Q两点移动t秒(0

题目详情
如图,在直角坐标系中,A点的坐标为(8,0),B点的坐标为(0,6),动点P以2/秒的速度从点B出发,沿BA向点A移动,同时动点Q以1/秒的速度从点A出发,沿AO向点O移动,设P、Q两点移动t秒(0<t<5).
(1)求AB的长;
(2)若四边形BPQO的面积与△APQ的面积的比为17:3,求t的值;
(3)在P、Q两点移动的过程中,能否使△APQ与△AOB相似?若能,求出此时点P的坐标;若不能,请说明理由.
▼优质解答
答案和解析
(1)由已知得,OA=8,OB=6(1分)
在Rt△ABO中,∠O=90°,由勾股定理得,
AB=
OA2+OB2
82+62
=10(3分)

(2)由已知得,BP=2t,AQ=t,AP=10-2t
过P作PC⊥OA于C,易得,△APC∽△ABO
AP
AB
PC
OB


10−2t
10
PC
6

解得,PC=
3
5
(10−2t)(4分)
∵四边形BPQO的面积:△APQ的面积的比=17:3
S△APC=
3
20
S△AOB(5分)
1
2
3
5
(10−2t)=
3
20
×
1
2
×6×8
解得,t1=2,t2=3(7分)

(3)若△APQ与△AOB相似,则有以下2种情况:
①∠AQP=90°
AP
AB
AQ
AO
10−2t
10
t
8
(8分)
解得,t=
40
13
(9分)
此时,PQ=
3
5
(10−2t)=
30
13
,OQ=8−t=
64
13

P(
64
13
30
13
)(10分)
②∠APQ=90°
过P作PD⊥OA于D
AP
AO
AQ
AB

10−2t
8
t
10

解得,t=
作业帮用户 2016-12-10
问题解析
(1)根据勾股定理可求得AB的长;
(2)由已知得,BP=2t,AQ=t,AP=10-2t,过P作PC⊥OA于C,易得,△APC∽△ABO,由对应线段成比例求得PC=
3
5
(10−2t);再由四边形BPQO的面积与△APQ的面积的比为17:3,得出S△APC=
3
20
S△AOB,由三角形的面积公式求解;
(3)若△APQ与△AOB相似,则要考虑以下2种情况:①∠AQP=90°,②∠APQ=90°.
名师点评
本题考点:
相似三角形的判定与性质;勾股定理.
考点点评:
本题主要考查了相似三角形的判定和性质,勾股定理、三角形的面积计算、点的坐标等知识点,要注意第三问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.不要忽略掉任何一种情况.
我是二维码 扫描下载二维码