早教吧作业答案频道 -->数学-->
如图:在△ABC中,AB=AC,P为BC边上任意一点,PE⊥AB于E,PF⊥AC于F,若AC边上的高BD=a.(1)试证明:PE+PF=a;(2)若点P在BC的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理
题目详情
如图:在△ABC中,AB=AC,P为BC边上任意一点,PE⊥AB于E,PF⊥AC于F,若AC边上的高BD=a.
(1)试证明:PE+PF=a;
(2)若点P在BC的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理由;如果不成立,请重新给出一个关于PE,PF,a的关系式,直接写出结论不需要说明理由.
(1)试证明:PE+PF=a;
(2)若点P在BC的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理由;如果不成立,请重新给出一个关于PE,PF,a的关系式,直接写出结论不需要说明理由.
▼优质解答
答案和解析
(1)证明:过P作PG⊥BD于G,
∵BD⊥AC,PF⊥AC,
∴PG∥DF,GD∥PF(垂直于同一条直线的两条直线互相平行),
∴四边形PGDF是平行四边形(两条对边互相平行的四边形是平行四边形);
又∵∠GDF=90°,
∴四边形PGDF是矩形(有一个角是直角的平行四边形是矩形),
∴PF=GD(矩形的对边相等)①
∵四边形PGDF是矩形
∴PG∥DF,即PG∥AC,
∴∠BPG=∠C(两条直线平行,同位角相等),
又∵AB=AC(已知)
∴∠ABC=∠C(等腰三角形的两底角相等),
∴∠BPG=∠ABC(等量代换)
∵∠PEB=∠BGP=90°(已证),BP=PB
∴△BPE≌△PBG(AAS)
∴PE=BG②
①+②:PE+PF=BG+GD
即PE+PF=BD=a;
(2) 结论:PE-PF=CD.(2分)理由如下:
过点C作CG⊥PE于G,
∵PE⊥AB,CD⊥AB,
∴∠CDE=∠DEG=∠EGC=90°.
∴四边形CGED为矩形.(3分)
∴CD=GE,GC∥AB.
∴∠GCP=∠B.
∵AB=AC,
∴∠B=∠ACB.
∴∠FCP=∠ACB=∠B=∠GCP.
在△PFC和△PGC中,
∵
,
∴△PFC≌△PGC.
∴PF=PG.
∴PE-PF=PE-PG=GE=CD=a.
∵BD⊥AC,PF⊥AC,
∴PG∥DF,GD∥PF(垂直于同一条直线的两条直线互相平行),
∴四边形PGDF是平行四边形(两条对边互相平行的四边形是平行四边形);
又∵∠GDF=90°,
∴四边形PGDF是矩形(有一个角是直角的平行四边形是矩形),
∴PF=GD(矩形的对边相等)①
∵四边形PGDF是矩形
∴PG∥DF,即PG∥AC,
∴∠BPG=∠C(两条直线平行,同位角相等),
又∵AB=AC(已知)
∴∠ABC=∠C(等腰三角形的两底角相等),
∴∠BPG=∠ABC(等量代换)
∵∠PEB=∠BGP=90°(已证),BP=PB
∴△BPE≌△PBG(AAS)
∴PE=BG②
①+②:PE+PF=BG+GD
即PE+PF=BD=a;
(2) 结论:PE-PF=CD.(2分)理由如下:
过点C作CG⊥PE于G,
∵PE⊥AB,CD⊥AB,
∴∠CDE=∠DEG=∠EGC=90°.
∴四边形CGED为矩形.(3分)
∴CD=GE,GC∥AB.
∴∠GCP=∠B.
∵AB=AC,
∴∠B=∠ACB.
∴∠FCP=∠ACB=∠B=∠GCP.
在△PFC和△PGC中,
∵
|
∴△PFC≌△PGC.
∴PF=PG.
∴PE-PF=PE-PG=GE=CD=a.
看了 如图:在△ABC中,AB=A...的网友还看了以下:
已知角MPN,AD在 PM上,C,B在PN上,A,B交CD于F.若PF平分角MPN,求证:1/PA 2020-05-13 …
PF跟C有什么区别?PF跟C有什么区别?我在玩街头篮球的时候看到有的2多级的PF跟C抢篮板的时候P 2020-07-10 …
设O为坐标原点,P是以F为焦点的抛物线上任意一点,M是线段PF上的点,且=2则直线OM的斜率的最大 2020-07-20 …
(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC 2020-07-21 …
如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端 2020-07-25 …
)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若FP= 2020-07-31 …
已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若FP=3 2020-07-31 …
已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若FP=4F 2020-10-31 …
已知抛物线C:x2=8y的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若PF=2F 2020-10-31 …
高数证明已知f(x)在区间[a,b]上连续,a<c<d<b,证明在(a,b)内至少有一A点,使pf( 2020-11-17 …