早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图:在△ABC中,AB=AC,P为BC边上任意一点,PE⊥AB于E,PF⊥AC于F,若AC边上的高BD=a.(1)试证明:PE+PF=a;(2)若点P在BC的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理

题目详情
如图:在△ABC中,AB=AC,P为BC边上任意一点,PE⊥AB于E,PF⊥AC于F,若AC边上的高BD=a.
作业帮
(1)试证明:PE+PF=a;
(2)若点P在BC的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理由;如果不成立,请重新给出一个关于PE,PF,a的关系式,直接写出结论不需要说明理由.
▼优质解答
答案和解析
作业帮(1)证明:过P作PG⊥BD于G,
∵BD⊥AC,PF⊥AC,
∴PG∥DF,GD∥PF(垂直于同一条直线的两条直线互相平行),
∴四边形PGDF是平行四边形(两条对边互相平行的四边形是平行四边形);
又∵∠GDF=90°,
∴四边形PGDF是矩形(有一个角是直角的平行四边形是矩形),
∴PF=GD(矩形的对边相等)①
∵四边形PGDF是矩形
∴PG∥DF,即PG∥AC,
∴∠BPG=∠C(两条直线平行,同位角相等),
又∵AB=AC(已知)
∴∠ABC=∠C(等腰三角形的两底角相等),
∴∠BPG=∠ABC(等量代换)
∵∠PEB=∠BGP=90°(已证),BP=PB
∴△BPE≌△PBG(AAS)
∴PE=BG②
①+②:PE+PF=BG+GD
即PE+PF=BD=a;
(2) 结论:PE-PF=CD.(2分)理由如下:
过点C作CG⊥PE于G,作业帮
∵PE⊥AB,CD⊥AB,
∴∠CDE=∠DEG=∠EGC=90°.
∴四边形CGED为矩形.(3分)
∴CD=GE,GC∥AB.
∴∠GCP=∠B.
∵AB=AC,
∴∠B=∠ACB.
∴∠FCP=∠ACB=∠B=∠GCP.
在△PFC和△PGC中,
∠PGC=∠PFC
∠GCP=∠FCP
PC=PC

∴△PFC≌△PGC.
∴PF=PG.
∴PE-PF=PE-PG=GE=CD=a.