早教吧作业答案频道 -->其他-->
(2010•石景山区二模)(1)已知:如图1,Rt△ABC中,∠ACB=90°,∠BAC=60°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,猜想:∠PAC+∠PBC=°(直接写出结论,不需证明).(2)已
题目详情
(2010•石景山区二模)(1)已知:如图1,Rt△ABC中,∠ACB=90°,∠BAC=60°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,猜想:∠PAC+∠PBC=______°(直接写出结论,不需证明).
(2)已知:如图2,Rt△ABC中,∠ACB=90°,∠BAC≠45°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,(1)中结论是否成立,若成立,请证明;若不成立请说明理由.
(2)已知:如图2,Rt△ABC中,∠ACB=90°,∠BAC≠45°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,(1)中结论是否成立,若成立,请证明;若不成立请说明理由.
▼优质解答
答案和解析
(1)猜想:∠PAC+∠PBC=180°;
(2)结论:依然成立.
证明:连接CE.
∵E为AB中点,
∴AE=EB=EC,
∴∠EAC=∠ECA,
∴∠DCE=∠ECA-∠DCA=∠EAC-45°,
又∵∠DAC=180°-∠ADC-45°=135°-∠PDE,
∴∠DCE=135°-∠PDE-45°=90°-∠PDE=∠DPE,
∴PE=EC=AE,
∴△PAE与△PBE为等腰直角三角形,∠APB=90°,
∴∠PAC+∠PBC=360°-∠APB-∠ACB=360°-90°-90°=180°.
(2)结论:依然成立.
证明:连接CE.
∵E为AB中点,
∴AE=EB=EC,
∴∠EAC=∠ECA,
∴∠DCE=∠ECA-∠DCA=∠EAC-45°,
又∵∠DAC=180°-∠ADC-45°=135°-∠PDE,
∴∠DCE=135°-∠PDE-45°=90°-∠PDE=∠DPE,
∴PE=EC=AE,
∴△PAE与△PBE为等腰直角三角形,∠APB=90°,
∴∠PAC+∠PBC=360°-∠APB-∠ACB=360°-90°-90°=180°.
看了 (2010•石景山区二模)(...的网友还看了以下:
[2013·天津高考]已知双曲线-=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0) 2020-04-08 …
为什么ax+by+c+A(mx+ny+p)表示过直线ax+by+c=0与mx+ny+p=0交点的所 2020-04-27 …
已知F是抛物线C:x2=2py,p>0的焦点,G、H是抛物线C上不同的两点,且|GF|+|BF|= 2020-05-15 …
一道一元二次方程数学题已知一元二次方程x^2+px+q=0的一个根与方程x^2+qx+p=0的一个 2020-05-16 …
函数f(x)=a^|x-b|(a>0,且a≠1)的图像关于直线X=b对称函数f(x)=a|x-b| 2020-05-22 …
函数f(x)=ax2+bx+c(a≠0),对任意实数a,b,c,m,n,p,关于x的方程m[f(x 2020-06-03 …
设p、q为不相等的正整数,且关于x的方程x2-px+q=0和x2-qx+p=0的根都是正整数,则| 2020-06-12 …
设A为属于P上的n级方阵,满足A^2-3A+2E=0,W1为(A-2E)X=0的解空间,W2为(A 2020-06-17 …
判断无穷积分∫1—+∞(㏑x)^p/(1+x^2)dx(p>0)的敛散性.对于任意p>0积分收敛. 2020-06-27 …
椭圆与抛物线相交椭圆:x/a+y/b=1(b>a>0)抛物线:x=2py(p>0)的交点分别为AB 2020-06-29 …