早教吧作业答案频道 -->数学-->
在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺
题目详情
在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.
(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;
(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).
①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;
②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;
③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF的数量关系.
(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;
(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).
①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;
②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;
③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF的数量关系.
▼优质解答
答案和解析
(1)PE=PF,理由:
∵四边形ABCD为正方形,
∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,
∴PE=PF;
(2)①成立,理由:
∵AC、BD是正方形ABCD的对角线,
∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,
∴∠DOE+∠AOE=90°,
∵∠MPN=90°,
∴∠FOA+∠AOE=90°,
∴∠FOA=∠DOE,
在△FOA和△EOD中,
,
∴△FOA≌△EOD,
∴OE=OF,即PE=PF;
②作OG⊥AB于G,
∵∠DOM=15°,
∴∠AOF=15°,则∠FOG=30°,
∵cos∠FOG=
,
∴OF=
=
,又OE=OF,
∴EF=
;
③PE=2PF,
证明:如图3,过点P作HP⊥BD交AB于点H,
则△HPB为等腰直角三角形,∠HPD=90°,
∴HP=BP,
∵BD=3BP,
∴PD=2BP,
∴PD=2 HP,
又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,
∴∠HPF=∠DPE,
又∵∠BHP=∠EDP=45°,
∴△PHF∽△PDE,
∴
=
=
,
即PE=2PF,
由此规律可知,当BD=m•BP时,PE=(m-1)•PF.
∵四边形ABCD为正方形,
∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,
∴PE=PF;
(2)①成立,理由:
∵AC、BD是正方形ABCD的对角线,
∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,
∴∠DOE+∠AOE=90°,
∵∠MPN=90°,
∴∠FOA+∠AOE=90°,
∴∠FOA=∠DOE,
在△FOA和△EOD中,
|
∴△FOA≌△EOD,
∴OE=OF,即PE=PF;
②作OG⊥AB于G,
∵∠DOM=15°,
∴∠AOF=15°,则∠FOG=30°,
∵cos∠FOG=
OG |
OF |
∴OF=
1 | ||||
|
2
| ||
3 |
∴EF=
2
| ||
3 |
③PE=2PF,
证明:如图3,过点P作HP⊥BD交AB于点H,
则△HPB为等腰直角三角形,∠HPD=90°,
∴HP=BP,
∵BD=3BP,
∴PD=2BP,
∴PD=2 HP,
又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,
∴∠HPF=∠DPE,
又∵∠BHP=∠EDP=45°,
∴△PHF∽△PDE,
∴
PF |
PE |
PH |
PD |
1 |
2 |
即PE=2PF,
由此规律可知,当BD=m•BP时,PE=(m-1)•PF.
看了 在正方形ABCD中,对角线A...的网友还看了以下:
MilitaryCosmicplane是什么意思MilitaryCosmicplane和Milit 2020-06-04 …
由代数式的乘法法则类比推导向量的数量积的运算法则:①m•n=n•m类比得到a•b=b•a;②(m+ 2020-06-27 …
写单词,这些单词打乱顺序了!:1.d,f,e,n,i,f,e,r,t,()2.g,h,o,e,t, 2020-07-26 …
数列an满足递推式(a(n+2))*an-(a(n+1))^2=(t^n)*(t-1),a1=1, 2020-08-01 …
已知{an}是正项无穷数列,满足1/(an*a(n+1))+1/(a(n+1)*a(n+2))+1 2020-08-02 …
拼读下列音标并写出相应单词./reə//kaɪts//bedz//ka:dz//hændz//'tʃ 2020-12-04 …
把给的字母中多余的一个字母丢掉,再把正确的单词拼出来(1)s,t,e,b,a,k,e(2)r,t,a 2020-12-14 …
把给的字母中多余的一个字母丢掉,再把正确的单词拼出来.(1)s,t,e,b,a,k,e(2)r,t, 2020-12-14 …
用(a,n,t,p,s)组成一个单词再用(k,c,I,s,s)用(a,n,t,p,s)组成一个单词再 2021-01-12 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …