早教吧作业答案频道 -->其他-->
如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥AE于F,直线PF分别交AB、CD于G、H,(1)求证:DH=AG+BE;(2)若BE=1,AB=3,求PE的长.
题目详情
如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥AE于F,直线PF分别交AB、CD于G、H,
(1)求证:DH=AG+BE;
(2)若BE=1,AB=3,求PE的长.
(1)求证:DH=AG+BE;
(2)若BE=1,AB=3,求PE的长.
▼优质解答
答案和解析
(1)证明:在DC上截取DM=BE,连接AM,
∵四边形ABCD是正方形,
∴∠ABE=∠ADM=90°,AB=AD,
∵在△ABE和△ADM中
,
∴△ABE≌ADM,
∴∠1=∠2,
∴∠1+∠BAM=∠2+∠BAM=90°,即AM⊥AE.
又∵PF⊥AE于F,
∴AM∥FH,
又∵AB∥CD,
∴四边形AGHM是平行四边形,
∴AG=MH,
∵DH=DM+MH,
∴DH=AG+BE.
(2)连接AP.
∵四边形ABCD是正方形,
∴AB=BC,∠ABP=∠CBP=45°,
∵在△ABP和△CBP中
∴△ABP≌△CBP,
∴PA=PC,∠3=∠4,
∵PE=PC,
∴PA=PE,
∵PE=PC,
∴∠4=∠5,
∴∠3=∠5,
又∵∠ANP=∠ENB,
∴∠3+∠ANP=∠5+∠ENB=90°,
∴AP⊥PE,即△APE是等腰直角三角形,
∵BE=1,AB=3,
∴AE=
=
,
∴PE=
=
∵四边形ABCD是正方形,
∴∠ABE=∠ADM=90°,AB=AD,
∵在△ABE和△ADM中
|
∴△ABE≌ADM,
∴∠1=∠2,
∴∠1+∠BAM=∠2+∠BAM=90°,即AM⊥AE.
又∵PF⊥AE于F,
∴AM∥FH,
又∵AB∥CD,
∴四边形AGHM是平行四边形,
∴AG=MH,
∵DH=DM+MH,
∴DH=AG+BE.
(2)连接AP.
∵四边形ABCD是正方形,
∴AB=BC,∠ABP=∠CBP=45°,
∵在△ABP和△CBP中
|
∴△ABP≌△CBP,
∴PA=PC,∠3=∠4,
∵PE=PC,
∴PA=PE,
∵PE=PC,
∴∠4=∠5,
∴∠3=∠5,
又∵∠ANP=∠ENB,
∴∠3+∠ANP=∠5+∠ENB=90°,
∴AP⊥PE,即△APE是等腰直角三角形,
∵BE=1,AB=3,
∴AE=
12+32 |
10 |
∴PE=
AE | ||
|
作业帮用户
2017-11-11
看了 如图,正方形ABCD中,P在...的网友还看了以下:
双曲线X的平方/a的平方-Y的平方/b的平方=1的准线与抛物线Y的平方=2PX(p>0)的一条准线 2020-04-08 …
已知曲线Y=根号2乘X的平方加二上一点P(1,2),用导数的定义求过点P的切线的倾斜角a和切线方程 2020-05-14 …
已知曲线C的极坐标方程ρ=2,给定两点P(0,π/2),Q(-2,π),则有()A.P在曲线C上, 2020-05-15 …
椭圆x^2/2+y^2=1,过点A(2,1)的直线与椭圆交于M,N两点,求弦MN的中点P轨迹方程设 2020-05-15 …
直线y=1/2x+1与抛物线y=ax^2+bx-3交于A,B两点,点A在x轴上,点B的纵坐标为3, 2020-05-20 …
已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆M的 2020-06-09 …
已知圆M的方程为x^2+(y-2)^2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆 2020-06-14 …
下列画图方法,一定可以画出的是()A.过点P画线段CD,使线段CD与已知线段AB相交B.过点P画线 2020-07-21 …
已知圆M(M为圆心)的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过 2020-07-26 …
向量的垂直题:设直线n和直线m的斜率为k和p,则直线n有方向向量a=(1,k).直线m有方向向量b 2020-08-02 …