早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知{an}是首项为a1=1的等差数列且满足an+1>an(n∈N*),等比数列{bn}的前三项分别为b1=a1+1,b2=a2+1,b3=a3+3.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)若数列{cn}满足(an+3)cnlog2bn=12,求数列{

题目详情
已知{an}是首项为a1=1的等差数列且满足an+1>an(n∈N*),等比数列{bn}的前三项分别为b1=a1+1,b2=a2+1,b3=a3+3.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足(an+3)cnlog2bn=
1
2
,求数列{cn}的前n项和Sn
▼优质解答
答案和解析
(Ⅰ)设等差数列{an}的公差为d,
首项a1=1,b1=2,b2=2+d,b3=4+2d,
∵{bn}为等比数列,∴
b
2
2
=b1b3,
即(2+d)2=2(4+2d),解得d=±2,
又∵an+1>an,即数列{an}为单调递增数列,
∴d=2,a2=3,a3=5,∴an=a1+(n-1)d=2n-1,
则b1=2,b2=4,q=2,
bn=b1qn−1=2n,
∴an=2n-1,bn=2n,
(Ⅱ)由题意得,(an+3)cnlog2bn=
1
2
,再由(1)结果代入,
变形得cn=
1
2(an+3)log2bn
1
2n(2n+2)
1
2
(
1
2n
1
2n+2
),
∴Sn=
1
2
(
1
2
1
4
)+
1
2
(
1
4
1
6
)+
1
2
(
1
6
1
8
)+…+
1
2
(
1
2n
1
2n+2
)
=
1
2
(
1
2
1
2n+2
)=
n
4(n+1)