早教吧作业答案频道 -->数学-->
已知数列{an}的前N项和Sn,{Sn+1}是以公比为2等比数列,a2是a1和a3等比中项,求数列{an}的通项公式
题目详情
已知数列{an}的前N项和Sn,{Sn+1}是以公比为2等比数列,a2是a1和a3等比中项,求数列{an}的通项公式
▼优质解答
答案和解析
数列{Sn+1}是公比为2的等比数列
S(n)+1=2^(n-1)(S1+1)=2^(n-1)(a1+1) ①
S(n-1)+1=2^(n-2)(a1+1) ②
①-②得
an=2^(n-2)(a1+1) ,n≥2
a2=a1+1
a3=2(a1+1)
a2是a1和a3的等比中项,故
a2^2=a1a3
(a1+1)^2=a1*2(a1+1)
解得a1=1(a1=-1则a2=0不合题意舍去)
故an=2^(n-1)
(2)Tn=1*2^0+2*2^1+3*2^2+……+n*2^(n-1)①
2Tn=1*2^1+2*2^2+3*2^3+……+n*2^n ②
②-①得
Tn=n*2^n-[1*2^0+1*2^1+2*2^2+3*2^3+……+1*2^(n-1)]
=n*2^n-1*(1-2^n)/(1-2)
=n*2^n-(2^n-1)
=(n-1)*2^n+1
S(n)+1=2^(n-1)(S1+1)=2^(n-1)(a1+1) ①
S(n-1)+1=2^(n-2)(a1+1) ②
①-②得
an=2^(n-2)(a1+1) ,n≥2
a2=a1+1
a3=2(a1+1)
a2是a1和a3的等比中项,故
a2^2=a1a3
(a1+1)^2=a1*2(a1+1)
解得a1=1(a1=-1则a2=0不合题意舍去)
故an=2^(n-1)
(2)Tn=1*2^0+2*2^1+3*2^2+……+n*2^(n-1)①
2Tn=1*2^1+2*2^2+3*2^3+……+n*2^n ②
②-①得
Tn=n*2^n-[1*2^0+1*2^1+2*2^2+3*2^3+……+1*2^(n-1)]
=n*2^n-1*(1-2^n)/(1-2)
=n*2^n-(2^n-1)
=(n-1)*2^n+1
看了 已知数列{an}的前N项和S...的网友还看了以下:
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
设数列{a}的前n项和为Sn,已知a1=a,an+1=Sn+3n次方设数列an的前n项和为Sn,已 2020-05-17 …
数列怎么这么难!1.已知a(1)=3且a(n)=S(n-1)+2^n,求an及Sn.2.已知S(n 2020-06-04 …
已知正数数列﹛an﹜中,a﹦1,前n项和为Sn,对任意n∈N*.lgSn、lgn、lg(1/a已知 2020-06-06 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
数学求极限问题啊lima0x^n+a1x^n-1+...+a(n-1)x+a(n)/b0x^m+b 2020-07-09 …
已知数列{an}的前n项和为Sn=n^2+n+1(1)求数列{an}的通项公式(2)已知数列{an 2020-07-11 …
求问n*a^n求和怎么算?如题, 2020-07-25 …
S(n)是数列{a(n)}的前n项和,已知4S(n)=a(n)^2+2a(n)-3.求a(n)通项S 2020-12-17 …
假若某蛋白质分子由n个氨基酸构成,它们含有3条多肽链,则它们具有的肽键数和R基团数分别是()A.n个 2021-01-01 …