早教吧作业答案频道 -->其他-->
证明1/2x+1/2y+1/2z≥1/(x+y)+1/(x+z)+1/(z+y)
题目详情
证明1/2x+1/2y+1/2z≥1/(x+y)+1/(x+z)+1/(z+y)
▼优质解答
答案和解析
应该有条件:x,y,z都大于0
要证1/2x+1/2y+1/2z≥1/(x+y)+1/(x+z)+1/(z+y)
只需证(1/x+1/y)/4≥1/(x+y) (1/x+1/z)/4≥1/(x+z) (1/z+1/y)/4≥1/(z+y)
(x-y)^2≥0
x^2-2xy+y^2≥0
x^2+2xy+y^2≥4xy
(x+y)^2≥4xy
(x+y)/(xy)≥4/(x+y)
(1/x+1/y)/4≥1/(x+y)
同理可证(1/x+1/z)/4≥1/(x+z) (1/z+1/y)/4≥1/(z+y)
将三式相加就可得1/2x+1/2y+1/2z≥1/(x+y)+1/(x+z)+1/(z+y)
要证1/2x+1/2y+1/2z≥1/(x+y)+1/(x+z)+1/(z+y)
只需证(1/x+1/y)/4≥1/(x+y) (1/x+1/z)/4≥1/(x+z) (1/z+1/y)/4≥1/(z+y)
(x-y)^2≥0
x^2-2xy+y^2≥0
x^2+2xy+y^2≥4xy
(x+y)^2≥4xy
(x+y)/(xy)≥4/(x+y)
(1/x+1/y)/4≥1/(x+y)
同理可证(1/x+1/z)/4≥1/(x+z) (1/z+1/y)/4≥1/(z+y)
将三式相加就可得1/2x+1/2y+1/2z≥1/(x+y)+1/(x+z)+1/(z+y)
看了证明1/2x+1/2y+1/2...的网友还看了以下:
∫∫∫x*e^(x^2+y^2+z^2)^2dv 体积由球面x^2+y^2+z^2=1与球面x^2 2020-05-16 …
20.x^2/a^2+y^2/b^2+z^2/c^2=1成立;20.x^2/a^2+y^2/b^2 2020-06-11 …
设f(x)为连续函数,f(0)=a,F(t)=∫∫∫Ω{z-f(x^2+y^2+z^2)]dv,其 2020-06-15 …
z∧3-3xyz=a∧3,求先对x偏导再对y的二阶偏导.答案是z(z∧4-2xyz∧2-x∧2y∧ 2020-06-18 …
1..设x/a+y/b+z/c=1,a/x+b/y+c/z=0,求x*2/a*2+y*2/b*2+z 2020-10-30 …
若a+b+c=1,求√(3a+1)+√(3b+1)+√(3c+1)的最大值设x=√(3a+1),y= 2020-10-31 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
1.x+y+z≠0且x/(y+z)=y/(x+y)=z/x+y,求x/(x+y+z)2.x+y+z= 2020-10-31 …
”数学史与不等式选讲“已知x,y,z>0,且x+y+z=1.求已知x,y,z>0,且x+y+z=1. 2020-11-01 …
已知:x^2/z+y+v^2/x+z+z^2/x+y=0,求x/z+y+y/x+z+z/x+y的值以 2020-12-31 …