早教吧作业答案频道 -->其他-->
若x/(y+z+t)=y/(z+t+x)=z/(t+x+y)=t/(x+y+z)即f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)=(t+x)/(y+z)证明:f是一个整数f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)+(t+x)/(y+z)后面那个是加号,不好意思,打错了
题目详情
若 x/(y+z+t)=y/(z+t+x)=z/(t+x+y)=t/(x+y+z)
即 f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)=(t+x)/(y+z)
证明:f是一个整数
f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)+(t+x)/(y+z)
后面那个是加号,不好意思,打错了
即 f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)=(t+x)/(y+z)
证明:f是一个整数
f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)+(t+x)/(y+z)
后面那个是加号,不好意思,打错了
▼优质解答
答案和解析
题目中f的表达式中最后那个等号应该是+号吧
f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)+(t+x)/(y+z)
设:a = x + y + z + t
并设:
k = x/(y+z+t) = y/(z+t+x) = z/(t+x+y) = t/(x+y+z)
由k = x/(y+z+t),得:
k = x/(a-x)
即:
(k+1)x = ak ………………①
同理可得:
(k+1)y = ak ………………②
(k+1)z = ak ………………③
(k+1)t = ak ………………④
(1)若k = -1,则由①得:
0*x = -a
得:a = 0,即x + y + z + t = 0
即:x+y = -(z+t);y+z = -(x+t);z+t = -(x+y);t+x = -(y+z)
因此:
f = (x+y)/(z+t) + (y+z)/(x+t) + (z+t)/(x+y) + (t+x)/(y+z)
= -1*4 = -4
(2)若k ≠ -1,则由①~④得:
x = y = z = t = ak/(k+1)
因此:
f = (x+y)/(z+t) + (y+z)/(x+t) + (z+t)/(x+y) + (t+x)/(y+z)
= 1*4 = 4
由(1)(2)知,f为整数
f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)+(t+x)/(y+z)
设:a = x + y + z + t
并设:
k = x/(y+z+t) = y/(z+t+x) = z/(t+x+y) = t/(x+y+z)
由k = x/(y+z+t),得:
k = x/(a-x)
即:
(k+1)x = ak ………………①
同理可得:
(k+1)y = ak ………………②
(k+1)z = ak ………………③
(k+1)t = ak ………………④
(1)若k = -1,则由①得:
0*x = -a
得:a = 0,即x + y + z + t = 0
即:x+y = -(z+t);y+z = -(x+t);z+t = -(x+y);t+x = -(y+z)
因此:
f = (x+y)/(z+t) + (y+z)/(x+t) + (z+t)/(x+y) + (t+x)/(y+z)
= -1*4 = -4
(2)若k ≠ -1,则由①~④得:
x = y = z = t = ak/(k+1)
因此:
f = (x+y)/(z+t) + (y+z)/(x+t) + (z+t)/(x+y) + (t+x)/(y+z)
= 1*4 = 4
由(1)(2)知,f为整数
看了若x/(y+z+t)=y/(z...的网友还看了以下:
设函数f(u)具有二阶导数,而z=f((e^x)*sin(y))满足方程d^2(z)/d^2(x^ 2020-05-16 …
下面哪一条是对伪传递规则的描述?()A.若X→Y及Y→Z为F所逻辑蕴含,则X→Z为F所逻辑蕴含B.由 2020-05-24 …
符合函数求导,z=z(x,y),F(x+z/y,y+z/x)=0之后F对x求导,可以令u=x+z/ 2020-06-12 …
关于复变函数化成只含z的形式的问题有一道常规的复变函数例题:已知解析函数f(z)的实部u=y^3- 2020-06-20 …
设f(u)有一阶连续偏导数,f(0)=2,且z=xf(y/x)+yf(y/x)满足∂z/∂x+∂z 2020-07-08 …
隐函数求导问题下列方程均确定了函数z=z(x,y).(1)f(ax-cz,ay-bz)=0,f可微 2020-07-22 …
求解几道高数题1.设f(u)具有二阶连续导数,而Z=f(e^xsiny),满足δ²Z/δx²+δ²Z 2020-10-31 …
1.f(x-z,y-z)=0,其中f(u,v)是可微函数,证明:偏z/偏x+偏z/偏y=12.设z= 2020-11-01 …
一道函数难题.集合M={x∣1≤x≤9,x∈Z},F={(a,b,c,d)∣a,b,c,d∈M},定 2020-11-01 …
设z=z(x,y)是由方程f(x-z,y-z)=0所确定的隐函数,其中f(u,v)具有连续的偏导数且 2020-11-01 …