早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•崇明县二模)已知:在△ABC中,∠ABC=90°,AB=5,∠C=30°,点D是AC边上一动点(不与A、C重合),过点D分别作DE⊥AB交AB于点E,DF⊥BC交BC于点F,联结EF,设AE=x,EF=y.(1)求y关于x的函数

题目详情
(2014•崇明县二模)已知:在△ABC中,∠ABC=90°,AB=5,∠C=30°,点D是AC边上一动点(不与A、C重合),过点D分别作DE⊥AB交AB于点E,DF⊥BC交BC于点F,联结EF,设AE=x,EF=y.
(1)求y关于x的函数解析式,并写出定义域;
(2)以F为圆心FC为半径的⊙F交直线AC于点G,当点G为AD中点时,求x的值;
(3)如图2,联结BD将△EBD沿直线BD翻折,点E落在点E′处,直线BE′与直线AC相交于点M,当△BDM为等腰三角形时,求∠ABD的度数.
▼优质解答
答案和解析
(1)∵DE⊥AB,DF⊥BC,∠ABC=90°,
∴∠DEB=∠DFB=∠ABC=90°,
∴四边形EBFD为矩形,
∴ED∥BF,EB∥DF
∴∠ADE=∠C=30°,
在Rt△AED中,∠ADE=30°,AE=x
∴ED=
3
x,AD=2x,∠BAC=60°
在Rt△BEF中,BE=5-x,BF=ED=
3
x
∴EF=
BF2+BE2

y=
4x2−10x+25
(0<x<5),
(2)在Rt△ABC中,∠C=30°,AB=5
∴AC=10,BC=5
3

∴FC=BC-BF=5
3
3
x
方法1:
连接EG,FG,如图2,
在Rt△AED中,G为AD中点
∴EG=AG=AE
∴△AEG为等边三角形
∴∠AGE=60°,
∵FC=FG
∴∠FGC=∠C=30°
∴∠EGF=90°,
在Rt△EGF中,EF2=EG2+GF2
4x2−10x+25=x2+(5
作业帮用户 2016-11-28
问题解析
(1)根据已知条件可证明四边形EBFD为矩形,则ED∥BF,EB∥DF,即可得出∠ADE=∠C=30°,在Rt△AED中,由∠ADE=30°,AE=x,可表示出ED=
3
x,AD=2x,在Rt△BEF中,BE=5-x,BF=ED=
3
x,由勾股定理得y=
4x2−10x+25
(0<x<5)即可;
(2)在Rt△ABC中,由∠C=30°,AB=5,得出AC=10,BC=5
3
,从而得出FC=BC-BF=5
3
3
x,分三种方法:
方法1:连接EG,FG,可证明△AEG为等边三角形,则∠AGE=60°,从而得出∠EGF=90°;在Rt△EGF中,由勾股定理得EF2=EG2+GF2,从而得出x的值;
方法2:连接FG,作FH⊥GC交GC于点H,则CG=2CH,在Rt△CHF中,由AC=AG+CG=x+15-3x=10,得出x的值;
方法3:连接FG并延长交BA延长线于点P,由DF∥PB,则
DF
AP
FG
GP
DG
GA
,即BP=AB+AP=10-x,在Rt△BFP中,根据勾股定理得PF2=PB2+BF2,求得x1=
5
2
,x2=10(舍去);
(3)由翻折可得∠ABD=∠DBE′,当△BDM是等腰三角形时,∠ABD的大小存在三种情况:
当点M落在AC边上时,①当BD=BM时,∠BDM=∠BMD,求得∠ABD=20°,②当DB=DM时,∠DBM=∠DMB,求得∠ABD=40°;
当点M在CA延长线上时,③当BD=BM时,∠BDM=∠BMD,根据∠ADB+∠M=∠DBE′,得∠ADB=
1
2
∠ABD,求得∠ABD=80°.
名师点评
本题考点:
相似形综合题.
考点点评:
本题考查了相似图形的综合运用,还考查了等腰三角形的判定、矩形的判定以及勾股定理的应用,分类讨论思想的运用,是一道综合性较强的题目,难度较大.
我是二维码 扫描下载二维码