早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求极限值lim(3^n+2^n)/(3^(n+1)-2^(n+1))=

题目详情
求极限值 lim(3^n+2^n)/(3^(n+1)-2^(n+1))=
▼优质解答
答案和解析
你怎么没写n的趋近范围?
1如果n—>(趋近于)无穷:
lim (3^n + 2^n)/(3^(n+1)-2^(n+1))
=lim(3^n /3^(n+1) + 2^n/3^(n+1))/ ( 3^(n+1) /3^(n+1) - 2^(n+1)/3^(n+1))
=lim(1/3 + (1/3)*(2/3)^n)/(1 - (2/3)^(n+1))
n->无穷
所以 (2/3)^n=0; (2/3)^(n+1)=0.
lim(1/3 + 0)/(1 - 0)=1/3


2如果n->0
(2/3)^n=2/3 ; (2/3)^(n+1)=4/9

lim(1/3 + (1/3)*(2/3)^n)/(1 - (2/3)^(n+1))
lim(1/3 + 2/9)/ (1 - 4/9)
lim (5/9)/ (5/9)=1