早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求方程y''-2y'+y=e^t满足初始条件下,y(0)=0和y'(0)=0的解

题目详情
求方程y''-2y'+y=e^t满足初始条件下,y(0)=0和y'(0)=0的解
▼优质解答
答案和解析
y''-2y'+y=e^t
特征方程
r^2-2r+1=0
r=1
因此其齐次通解为y=(C1+C2t)e^t
设其特解为y=at^2e^t
y'=2ate^t+at^2e^t
y''=2ae^t+2ate^t+2ate^t+at^2e^t=2ae^t+4ate^t+at^2e^t
代入原方程得
2ae^t+4ate^t+at^2e^t-2(2ate^t+at^2e^t)+at^2e^t=e^t
a=1/2
所以特解是y=1/2t^2e^t
方程的解是y=(C1+C2t)e^t+1/2t^2e^t
y(0)=0代入得
0=C1
y=C2te^t+1/2t^2e^t
y'=C2e^t+C2te^t+2te^t+1/2t^2e^t
y'(0)=0代入得
0=C2
因此y=1/2t^2e^t