早教吧作业答案频道 -->数学-->
有九道因式分解,做几道都行1.x^2+4y-9z^2-4xy-6xz+12yz2.a^2b^2-a^2-b^2-4ab+13.a^2(x-y)^2-2a(x-y)^3+(x-y)^44.3a^8-48b^85.x^2m+(2分之1)x^m+(16分之1)6.x^4-6x^2+57.x^4-7x^2+18.x(x+y+z)+yz9.6xy-x^2-5y^2我妈说,如果我做错一点
题目详情
有九道因式分解,做几道都行
1.x^2+4y-9z^2-4xy-6xz+12yz
2.a^2b^2-a^2-b^2-4ab+1
3.a^2(x-y)^2-2a(x-y)^3+(x-y)^4
4.3a^8-48b^8
5.x^2m+(2分之1)x^m+(16分之1)
6.x^4-6x^2+5
7.x^4-7x^2+1
8.x(x+y+z)+yz
9.6xy-x^2-5y^2
我妈说,如果我做错一点,就不让我学葫芦丝了,(a^2=a的2次方)谢谢!
1.x^2+4y-9z^2-4xy-6xz+12yz
2.a^2b^2-a^2-b^2-4ab+1
3.a^2(x-y)^2-2a(x-y)^3+(x-y)^4
4.3a^8-48b^8
5.x^2m+(2分之1)x^m+(16分之1)
6.x^4-6x^2+5
7.x^4-7x^2+1
8.x(x+y+z)+yz
9.6xy-x^2-5y^2
我妈说,如果我做错一点,就不让我学葫芦丝了,(a^2=a的2次方)谢谢!
▼优质解答
答案和解析
2 a^2b^2-a^2-b^2-4ab+1
=a^2b^2-2ab+1 -(a^2+b^2-2ab)
=(ab-1)^2-(a+b)^2
=(ab-1+a+b)(ab-1-a-b)
3 a^2(x-y)^2-2a(x-y)^3+(x-y)^4
=(x-y)^2[a^2-2a(x-y)+(x-y)^2 ]
=(x-y)^2(a-x+y)^2
5 x^2m+(2分之1)x^m+(16分之1)
=(x^m+1/4)^2
6 .x^4-6x^2+5
=(x^2-5)(x^2-1)
=(x+genhao5)(x-genhao5)(x+1)(x-1)
8 x(x+y+z)+yz
=x^2+xy+xz+yz
=x(x+y)+(x+y)z
=(x+z)(x+y)
9 6xy-x^2-5y^2
=-(x^2-6xy+5y^2)
=-(x-5y)(x-y)
=a^2b^2-2ab+1 -(a^2+b^2-2ab)
=(ab-1)^2-(a+b)^2
=(ab-1+a+b)(ab-1-a-b)
3 a^2(x-y)^2-2a(x-y)^3+(x-y)^4
=(x-y)^2[a^2-2a(x-y)+(x-y)^2 ]
=(x-y)^2(a-x+y)^2
5 x^2m+(2分之1)x^m+(16分之1)
=(x^m+1/4)^2
6 .x^4-6x^2+5
=(x^2-5)(x^2-1)
=(x+genhao5)(x-genhao5)(x+1)(x-1)
8 x(x+y+z)+yz
=x^2+xy+xz+yz
=x(x+y)+(x+y)z
=(x+z)(x+y)
9 6xy-x^2-5y^2
=-(x^2-6xy+5y^2)
=-(x-5y)(x-y)
看了有九道因式分解,做几道都行1....的网友还看了以下:
先化简,再求值 (1)[(x-y)的平方+(x+y)(x-y)]÷2x 其中X=2010,y=20 2020-05-16 …
高数代换问题,微分方程,设y=x/lnx是微分方程y'=y/x+φ(x/y)的解,则φ(x/y)的 2020-05-16 …
1.求当m为何值时,抛物线y=x^2-(m+3)x+4的定点在坐标轴上?2.已知抛物线y=x^2+ 2020-05-17 …
在曲线y=x²+x上取点P(1,2)及邻点Q(1+△x,2+△y),那么△x分之△y为A:△x-2 2020-06-03 …
函数y=x^(1/3)在x=0处导数不存在,但是切线存在,那函数在此点可导么?可微么?函数y=x^ 2020-06-03 …
①y=x,x=1,y=0②y=根号x,x=4,y=0绕x轴旋转产生的旋转体的体积;③y=x^2,y 2020-06-25 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
把下列各式化成(x-y)的n次方(x-y)³×(y-x)²×(x-y)(x-y)×(x-y)的4次 2020-07-18 …
如图.过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称,过点 2020-10-31 …
y=x(X的平方)-4x+3与坐标轴交与A,B,C三点,点P为抛物线上一点,PE垂直于BC与E点,且 2021-01-11 …