早教吧 育儿知识 作业答案 考试题库 百科 知识分享

阅读下面材料,并解答问题.材料:将分式-x4-x2+3-x2+1拆分成一个整式与一个分式(分子为整数)的和的形式.由分母为-x2+1,可设-x4-x2+3=(-x2+1)(x2+a)+b则-x4-x2+3=(-x2+1)(x2+a)+b=-x4-ax2+x2

题目详情
阅读下面材料,并解答问题.
材料:将分式
-x4-x2+3
-x2+1
拆分成一个整式与一个分式(分子为整数)的和的形式.
由分母为-x2+1,可设-x4-x2+3=(-x2+1)(x2+a)+b
则-x4-x2+3=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b)
∵对应任意x,上述等式均成立,∴
a-1=1
a+b=3
,∴a=2,b=1
-x4-x2+3
-x2+1
=
(-x2+1)(x2+2)+1
-x2+1
=
(-x2+1)(x2+2)
-x2+1
+
1
-x2+1
=x2+2+
1
-x2+1

这样,分式
-x4-x2+3
-x2+1
被拆分成了一个整式x2+2与一个分式
1
-x2+1
的和.
解答:
(1)将分式
-x4-6x2+8
-x2+1
拆分成一个整式与一个分式(分子为整数)的和的形式.
(2)当-1<x<1时,试说明
-x4-6x2+8
-x2+1
的最小值为8.
▼优质解答
答案和解析
(1)由分母为-x2+1,可设-x4-6x2+8=(-x2+1)(x2+a)+b
则-x4-6x2+8=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b)
∵对应任意x,上述等式均成立,
a-1=6
a+b=8

∴a=7,b=1,
-x4-6x2+8
-x2+1
=
(-x2+1)(x2+7)+1
-x2+1
=
(-x2+1)(x2+7)
-x2+1
+
1
-x2+1
=x2+7+
1
-x2+1

这样,分式
-x4-6x2+8
-x2+1
被拆分成了一个整式x2+7与一个分式
1
-x2+1
的和.

(2)由
-x4-6x2+8
-x2+1
=x2+7+
1
-x2+1
知,
对于x2+7+
1
-x2+1
,当x=0时,这两个式子的和有最小值,最小值为8,
-x4-6x2+8
-x2+1
的最小值为8.