早教吧作业答案频道 -->其他-->
已知等差数列{an}的前n项和为Sn,且满足Sn=n2-n.(Ⅰ)求an;(Ⅱ)设数列{bn}满足bn+1=2bn-an且b1=4,(i)证明:数列{bn-2n}是等比数列,并求{bn}的通项;(ii)当n≥2时,比较bn-1•bn+1与bn2的大
题目详情
已知等差数列{an}的前n项和为Sn,且满足Sn=n2-n.
(Ⅰ)求an;
(Ⅱ)设数列{bn}满足bn+1=2bn-an且b1=4,
(i)证明:数列{bn-2n}是等比数列,并求{bn}的通项;
(ii)当n≥2时,比较bn-1•bn+1与bn2的大小.
(Ⅰ)求an;
(Ⅱ)设数列{bn}满足bn+1=2bn-an且b1=4,
(i)证明:数列{bn-2n}是等比数列,并求{bn}的通项;
(ii)当n≥2时,比较bn-1•bn+1与bn2的大小.
▼优质解答
答案和解析
(Ⅰ)∵Sn=n2-n,
∴当n=1时,a1=S1=0,
当n≥2时,an=Sn-Sn-1=n2-n-[(n-1)2-(n-1)]=2n-2,
∵n=1时满足上式,
∴an=2n-2.
(Ⅱ)(i)证明:由已知得bn+1=2bn-2n+2,
即bn+1-2(n+1)=2(bn-2n),且b1-2=2,
∴数列{bn-2n}是以2为首项,2为公比的等比数列,
则bn−2n=2n,∴bn=2n+2n.
(ii)当n≥2时,∵bn−1•bn+1−bn2
=[2n-1+2(n-1)]•[2n+1+2(n+1)]-(2n+2n)2
=22n+2n(n+1)+2n×4(n-1)+4(n2-1)-(22n+4n×2n+4n2)
=2n(n-3)-4,
∴当n=2或n=3时,bn−1•bn+1<bn2,
当n≥4时,bn−1•bn+1>bn2.
∴当n=1时,a1=S1=0,
当n≥2时,an=Sn-Sn-1=n2-n-[(n-1)2-(n-1)]=2n-2,
∵n=1时满足上式,
∴an=2n-2.
(Ⅱ)(i)证明:由已知得bn+1=2bn-2n+2,
即bn+1-2(n+1)=2(bn-2n),且b1-2=2,
∴数列{bn-2n}是以2为首项,2为公比的等比数列,
则bn−2n=2n,∴bn=2n+2n.
(ii)当n≥2时,∵bn−1•bn+1−bn2
=[2n-1+2(n-1)]•[2n+1+2(n+1)]-(2n+2n)2
=22n+2n(n+1)+2n×4(n-1)+4(n2-1)-(22n+4n×2n+4n2)
=2n(n-3)-4,
∴当n=2或n=3时,bn−1•bn+1<bn2,
当n≥4时,bn−1•bn+1>bn2.
看了已知等差数列{an}的前n项和...的网友还看了以下:
设A=(aij)n×n为实矩阵,已知aii>0(i=1,2…n),aij<0(i,j=1,2…n; 2020-05-14 …
若函数f(x)z在[a,b]上连续,xi∈[a,b],ti>0(i=1,2,3,...,n)且∑( 2020-05-17 …
柯西不等式的问题设a,b∈R+,(i=1,2,..,n),且a+b=2求证:a2/(2-a)+b2 2020-06-06 …
对于0,2,4,6,8…2002,2004组成的集合,给出下列四种表示形式①{x|x=2n,且0≤ 2020-06-28 …
不等式已知ai属于R+(i=1,2.n)且a1+a2+...+an=1,求证a1\(1+a2+a3 2020-07-09 …
设由正整数构成的数列{an}满足a(10k-9)+a(10k-8)+...+a10k≤19对一切k∈ 2020-11-01 …
求证:设ξ是随机变量,ξ=η1+η2+…+ηn,ηi(i=1,2,…,n)都是存在数学期望的随机变量 2020-11-02 …
请问高手如下代码的运算过程和结果PrivateSubCommand1Click()Dimarr1(1 2020-11-03 …
方阵的特征值问题老师,我是自学者,在学习方阵的特征值时,这个地方不明白,设n阶矩阵A=(aij)的特 2020-11-07 …
已知xi大于等于0.(i=1,2……n)且x1+x2+……+xn=1求证1小于等于根号x1+根号x2 2020-11-29 …