早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知等差数列{an}的前n项和为Sn,且满足Sn=n2-n.(Ⅰ)求an;(Ⅱ)设数列{bn}满足bn+1=2bn-an且b1=4,(i)证明:数列{bn-2n}是等比数列,并求{bn}的通项;(ii)当n≥2时,比较bn-1•bn+1与bn2的大

题目详情
已知等差数列{an}的前n项和为Sn,且满足Sn=n2-n.
(Ⅰ)求an
(Ⅱ)设数列{bn}满足bn+1=2bn-an且b1=4,
(i)证明:数列{bn-2n}是等比数列,并求{bn}的通项;
(ii)当n≥2时,比较bn-1•bn+1与bn2的大小.
▼优质解答
答案和解析
(Ⅰ)∵Sn=n2-n,
∴当n=1时,a1=S1=0,
当n≥2时,an=Sn-Sn-1=n2-n-[(n-1)2-(n-1)]=2n-2,
∵n=1时满足上式,
∴an=2n-2.
(Ⅱ)(i)证明:由已知得bn+1=2bn-2n+2,
即bn+1-2(n+1)=2(bn-2n),且b1-2=2,
∴数列{bn-2n}是以2为首项,2为公比的等比数列,
bn−2n=2n,∴bn=2n+2n.
(ii)当n≥2时,∵bn−1•bn+1−bn2
=[2n-1+2(n-1)]•[2n+1+2(n+1)]-(2n+2n)2
=22n+2n(n+1)+2n×4(n-1)+4(n2-1)-(22n+4n×2n+4n2
=2n(n-3)-4,
∴当n=2或n=3时,bn−1•bn+1<bn2,
当n≥4时,bn−1•bn+1>bn2.