早教吧作业答案频道 -->其他-->
(2014•海淀区二模)已知点E、F分别是正方体ABCD-A1B1C1D1的棱AB、AA1的中点,点M、N分别是线段D1E与C1F上的点,则满足与平面ABCD平行的直线MN有()A.0条B.1条C.2条D.无数条
题目详情
(2014•海淀区二模)已知点E、F分别是正方体ABCD-A1B1C1D1的棱AB、AA1的中点,点M、N分别是线段D1E与C1F上的点,则满足与平面ABCD平行的直线MN有( )
A.0条
B.1条
C.2条
D.无数条
A.0条
B.1条
C.2条
D.无数条
▼优质解答
答案和解析
取BB1的中点H,连接FH,则FH∥C1D
连接HE,在D1E上任取一点M,
过M在面D1HE中,作MG平行于HO,
其中O为线段D1E的中点,交D1H于G,
再过G作GN∥FH,交C1F于N,连接MN,
由于GM∥HO,HO∥KB,KB⊂平面ABCD,
GM⊄平面ABCD,
所以GM∥平面ABCD,
同理由NG∥FH,可推得NG∥平面ABCD,
由面面平行的判定定理得,平面MNG∥平面ABCD,
则MN∥平面ABCD.
由于M为D1E上任一点,故这样的直线MN有无数条.
故选D.
连接HE,在D1E上任取一点M,
过M在面D1HE中,作MG平行于HO,
其中O为线段D1E的中点,交D1H于G,
再过G作GN∥FH,交C1F于N,连接MN,
由于GM∥HO,HO∥KB,KB⊂平面ABCD,
GM⊄平面ABCD,
所以GM∥平面ABCD,
同理由NG∥FH,可推得NG∥平面ABCD,
由面面平行的判定定理得,平面MNG∥平面ABCD,
则MN∥平面ABCD.
由于M为D1E上任一点,故这样的直线MN有无数条.
故选D.
看了(2014•海淀区二模)已知点...的网友还看了以下:
如图,抛物线Y=ax^2+bx+c经过(-根号3,0),B(3根号3,0),C(0,3)三点,线段 2020-05-14 …
matlab分段积分函数画图syms c;l1=1.1;l2=1.6;l3=3.1;l4=1.6; 2020-05-16 …
线段的比小明认为:(1)a/b=c/d(a+b≠0,c+d≠0),那么a/(b+a)=c/(d+c 2020-05-22 …
初三比例式计算.如题.已知a/b=c/d(bd不等于0).判断下列比例式是否成立.并说明理由.a- 2020-06-10 …
在直角坐标系内描出A(2,0),B(4,0),C(-1,0),D(3,0).(1)分别求出线段AB 2020-06-25 …
2、在坐标平面内描出点A(2,0),B(4,0),C(-1,0),D(-3,0).¬(1)分别求出 2020-06-25 …
如图,已知数轴上点A、B、C所对应的数a、b、c都不为0,且C是AB的中点.如果|a+b|-|a- 2020-07-20 …
如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0 2020-08-02 …
如图,已知数轴上点A、B、C所对应的数a、b、c都不为0,且C是AB的中点.如果|a+b|-|a-2 2020-11-01 …
执行语句“chara[10]={"abcd"},*p=a;”后,*(p+4)的值是()A."abcd 2020-12-15 …