早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•海淀区二模)已知点E、F分别是正方体ABCD-A1B1C1D1的棱AB、AA1的中点,点M、N分别是线段D1E与C1F上的点,则满足与平面ABCD平行的直线MN有()A.0条B.1条C.2条D.无数条

题目详情
(2014•海淀区二模)已知点E、F分别是正方体ABCD-A1B1C1D1的棱AB、AA1的中点,点M、N分别是线段D1E与C1F上的点,则满足与平面ABCD平行的直线MN有(  )

A.0条
B.1条
C.2条
D.无数条
▼优质解答
答案和解析
取BB1的中点H,连接FH,则FH∥C1D
连接HE,在D1E上任取一点M,
过M在面D1HE中,作MG平行于HO,
其中O为线段D1E的中点,交D1H于G,
再过G作GN∥FH,交C1F于N,连接MN,
由于GM∥HO,HO∥KB,KB⊂平面ABCD,
GM⊄平面ABCD,
所以GM∥平面ABCD,
同理由NG∥FH,可推得NG∥平面ABCD,
由面面平行的判定定理得,平面MNG∥平面ABCD,
则MN∥平面ABCD.
由于M为D1E上任一点,故这样的直线MN有无数条.
故选D.