早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=nSnn2+c,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明

题目详情
设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=
nSn
n2+c
,n∈N*,其中c为实数.
(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.
▼优质解答
答案和解析
证明:(1)若c=0,则an=a1+(n-1)d,Sn=n[(n−1)d+2a]2,bn=nSnn2=(n−1)d+2a2.当b1,b2,b4成等比数列时,则b22=b1b4,即:(a+d2)2=a(a+3d2),得:d2=2ad,又d≠0,故d=2a.因此:Sn=n2a,Snk=(nk)2a=n2...