早教吧作业答案频道 -->其他-->
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=1an−12(n≥1).(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
题目详情
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=
(n≥1).
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
1 | ||
an−
|
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
▼优质解答
答案和解析
法一:
(I)a1=1,故b1=
=2;a2=
,
故b2=
=
;a3=
,
故b3=
=4;a4=
,
故b4=
.
(II)因(b1−
)(b3−
)=
×
=(
)2,(b2−
)2=(
)2,(b1−
)(b3−
)=(b2−
)2
故猜想{bn−
}是首项为
,公比q=2的等比数列.
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
(n≥1).
因bn+1−
=
−
=
−
=
,
2(bn−
)=
−
=
=bn+1−
,b1−
≠0,
故|bn−
|确是公比为q=2的等比数列.
因b1−
=
,故bn−
=
•2n,bn=
•2n+
(n≥1),
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1)
法二:
(Ⅰ)由bn=
得an=
+
,代入递推关系8an+1an-16an+1+2an+5=0,
整理得
−
+
=0,即bn+1=2bn−
,
由a1=1,有b1=2,所以b2=
,b3=4,b4=
.
(Ⅱ)由bn+1=2bn−
,bn+1−
=2(bn−
),b1−
=
≠0,
所以{bn−
}是首项为
,公比q=2的等比数列,
故bn−
=
•2n,即bn=
•2n+
(n≥1).
由bn=
,得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1).
法三:
(Ⅰ)同解法一
(Ⅱ)b2−b1=
,b3−b2=
,b4−b3=
,
×
=(
)2猜想{bn+1-bn}是首项为
,
公比q=2的等比数列,bn+1−bn=
•2n
又因an≠2,故an+1=
(n≥1).
因此bn+1−bn=
−
=
−
=
−
=
;
bn+2−bn+1=
−
=
−
=
−
=
=2(bn+1−bn).
因b2−b1=
≠0,{bn+1−bn}是公比q=2的等比数列,bn+1−bn=
•2n,
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
(2n−1+2n−2++21)+2
=
(2n−2)+2
=
•2n+
(n≥1).
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n−1).
(I)a1=1,故b1=
1 | ||
1−
|
7 |
8 |
故b2=
1 | ||||
|
8 |
3 |
3 |
4 |
故b3=
1 | ||||
|
13 |
20 |
故b4=
20 |
3 |
(II)因(b1−
4 |
3 |
4 |
3 |
2 |
3 |
8 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
故猜想{bn−
4 |
3 |
2 |
3 |
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
5+2a |
16−8an |
因bn+1−
4 |
3 |
1 | ||
an+1−
|
4 |
3 |
16−8an |
6an−3 |
4 |
3 |
20−16an |
6an−3 |
2(bn−
4 |
3 |
2 | ||
an−
|
8 |
3 |
20−16an |
6an−3 |
4 |
3 |
4 |
3 |
故|bn−
4 |
3 |
因b1−
4 |
3 |
2 |
3 |
4 |
3 |
1 |
3 |
1 |
3 |
4 |
3 |
由bn=
1 | ||
an−
|
1 |
2 |
故Sn=a1b1+a2b2+…+anbn=
1 |
2 |
| ||
1−2 |
5 |
3 |
1 |
3 |
法二:
(Ⅰ)由bn=
1 | ||
an−
|
1 |
bn |
1 |
2 |
整理得
4 |
bn+1bn |
6 |
bn+1 |
3 |
bn |
4 |
3 |
由a1=1,有b1=2,所以b2=
8 |
3 |
20 |
3 |
(Ⅱ)由bn+1=2bn−
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
2 |
3 |
所以{bn−
4 |
3 |
2 |
3 |
故bn−
4 |
3 |
1 |
3 |
1 |
3 |
4 |
3 |
由bn=
1 | ||
an−
|
1 |
2 |
故Sn=a1b1+a2b2+…+anbn=
1 |
2 |
| ||
1−2 |
5 |
3 |
1 |
3 |
法三:
(Ⅰ)同解法一
(Ⅱ)b2−b1=
2 |
3 |
4 |
3 |
8 |
3 |
2 |
3 |
8 |
3 |
4 |
3 |
2 |
3 |
公比q=2的等比数列,bn+1−bn=
1 |
3 |
又因an≠2,故an+1=
5+2an |
16−8an |
因此bn+1−bn=
1 | ||
an+1−
|
1 | ||
an−
|
1 | ||||
|
2 |
2an−1 |
16−8an |
6an−3 |
6 |
6an−3 |
10−8an |
6an−3 |
bn+2−bn+1=
1 | ||
an+2−
|
1 | ||
an+1−
|
16−8an+1 |
6an+1−3 |
16−8an |
6an−3 |
36−24an |
6an−3 |
16−8an |
6an−3 |
20−16an |
6an−3 |
因b2−b1=
2 |
3 |
1 |
3 |
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
1 |
3 |
=
1 |
3 |
=
1 |
3 |
4 |
3 |
由bn=
1 | ||
an−
|
1 |
2 |
故Sn=a1b1+a2b2+…+anbn=
1 |
2 |
| ||
1−2 |
5 |
3 |
1 |
3 |
看了数列{an}满足a1=1且8a...的网友还看了以下:
若已知ab=8,且a,b都是正数,试求1/2a^2+1/2b^2不要什么平方根 2020-04-11 …
1.已知[a]=4,[b]=8且a>b,求a,b的值 2020-05-15 …
若抛物线y=ax2+bx+c顶点的纵坐标为-8,且a:b:c=1:2:(-3),则此二次函数的解析 2020-05-16 …
已知|a|=6,|b|=8,且|a+b|=|a-b|,求|a-b|. 2020-05-16 …
已知数轴上的4个点A、B、C、D对应的数分别为a、b、c、d,而c比b大3,b比d小7,c比a大8 2020-05-16 …
已知实数a,b满足a+b=8,ab=15,且a>b,试求a-b的值解a+b=8,ab=15(a+b 2020-05-17 …
如图,长方形ABCD在直角坐标系中,边BC在x轴上,B点坐标为(m,0)且m>0.AB=a,BC= 2020-06-14 …
已知▕a▕=7,▕b▕=8,且a,b异号,求▕a+b▕-▕a-b▕的值 2020-07-30 …
已知数列{an}是递增的等比数列,满足a2=8,且(5/4)a2是a1,a3的等差中项,数列{bn} 2020-12-24 …
若抛弧线y=ax平方+bx+c顶点的纵坐标是x=-8且a:b:c=1:2:(-3),则此二次函数的解 2021-01-17 …