早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=1an−12(n≥1).(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.

题目详情
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=
1
an−
1
2
(n≥1).
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn
▼优质解答
答案和解析
法一:
(I)a1=1,故b1=
1
1−
1
2
=2;a2=
7
8

b2=
1
7
8
1
2
8
3
a3=
3
4

b3=
1
3
4
1
2
=4;a4=
13
20

b4=
20
3


(II)因(b1−
4
3
)(b3−
4
3
)=
2
3
×
8
3
=(
4
3
)2,(b2−
4
3
)2=(
4
3
)2,(b1−
4
3
)(b3−
4
3
)=(b2−
4
3
)2
故猜想{bn−
4
3
}是首项为
2
3
,公比q=2的等比数列.
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
5+2a
16−8an
(n≥1).
bn+1−
4
3
1
an+1−
1
2
4
3
16−8an
6an−3
4
3
20−16an
6an−3

2(bn−
4
3
)=
2
an−
1
2
8
3
20−16an
6an−3
=bn+1−
4
3
,b1−
4
3
≠0,
|bn−
4
3
|确是公比为q=2的等比数列.
b1−
4
3
2
3
,故bn−
4
3
1
3
•2n,bn=
1
3
•2n+
4
3
(n≥1),
bn=
1
an−
1
2
anbn=
1
2
bn+1,
故Sn=a1b1+a2b2+…+anbn=
1
2
(b1+b2++bn)+n=
1
3
(1−2n)
1−2
+
5
3
n=
1
3
(2n+5n−1)

法二:
(Ⅰ)由bn=
1
an−
1
2
an=
1
bn
+
1
2
,代入递推关系8an+1an-16an+1+2an+5=0,
整理得
4
bn+1bn
6
bn+1
+
3
bn
=0,即bn+1=2bn−
4
3

由a1=1,有b1=2,所以b2=
8
3
,b3=4,b4=
20
3


(Ⅱ)由bn+1=2bn−
4
3
,bn+1−
4
3
=2(bn−
4
3
),b1−
4
3
2
3
≠0,
所以{bn−
4
3
}是首项为
2
3
,公比q=2的等比数列,
bn−
4
3
1
3
•2n,即bn=
1
3
•2n+
4
3
(n≥1).
bn=
1
an−
1
2
,得anbn=
1
2
bn+1,
故Sn=a1b1+a2b2+…+anbn=
1
2
(b1+b2++bn)+n=
1
3
(1−2n)
1−2
+
5
3
n=
1
3
(2n+5n−1).

法三:
(Ⅰ)同解法一
(Ⅱ)b2−b1=
2
3
,b3−b2=
4
3
,b4−b3=
8
3
2
3
×
8
3
=(
4
3
)2猜想{bn+1-bn}是首项为
2
3

公比q=2的等比数列,bn+1−bn=
1
3
•2n
又因an≠2,故an+1=
5+2an
16−8an
(n≥1).
因此bn+1−bn=
1
an+1−
1
2
1
an−
1
2
1
5+2an
16−8an
1
2
2
2an−1
=
16−8an
6an−3
6
6an−3
10−8an
6an−3

bn+2−bn+1=
1
an+2−
1
2
1
an+1−
1
2
16−8an+1
6an+1−3
16−8an
6an−3
=
36−24an
6an−3
16−8an
6an−3
20−16an
6an−3
=2(bn+1−bn).
b2−b1=
2
3
≠0,{bn+1−bn}是公比q=2的等比数列,bn+1−bn=
1
3
•2n,
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
1
3
(2n−1+2n−2++21)+2
=
1
3
(2n−2)+2
=
1
3
•2n+
4
3
(n≥1).
bn=
1
an−
1
2
anbn=
1
2
bn+1,
故Sn=a1b1+a2b2+…+anbn=
1
2
(b1+b2++bn)+n=
1
3
(1−2n)
1−2
+
5
3
n=
1
3
(2n+5n−1).