早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数列{an}是等差数列,Sn是其前n项和(n∈N*),若.(1)求数列{an}的通项公式;(2)设,Tn是数列{bn}的前n项和,求Tn的表达式;(3)设,求C2+C4+C6+…+C2n+2.

题目详情
数列{a n }是等差数列,S n 是其前n项和(n∈N * ),若
(1)求数列{a n }的通项公式;
(2)设 ,T n 是数列{b n }的前n项和,求T n 的表达式;
(3)设 ,求C 2 +C 4 +C 6 +…+C 2n+2
▼优质解答
答案和解析

分析:
(1)直接把条件转化为首项和公差来表示,求出首项和公差,即可求出数列{an}的通项公式;(2)直接把上一问的结果代入,求出数列{bn}的通项公式;再利用裂项相消法求出Tn的表达式;(3)先把所求数列{an}的通项公式代入求出=3n,进而得到c2,c4,c6…c2n-2是首项为9,公比为9的等比数列.再代入等比数列的求和公式即可求C2+C4+C6+…+C2n+2.

(1)由已知得:解得:.所以an=1+(n-1)×=.(2)∵==4()∴sn=4[()+()+…+()]=4(-)=.(3)∵=3n,∴c2,c4,c6…c2n-2是首项为9,公比为9的等比数列.∴C2+C4+C6+…+C2n+2=32+34+…+32n+2==.
点评:
本题主要考查等差数列和等比数列的综合问题.解决本题的关键在于求出数列{an}的通项公式以及裂项相消求和的运用.