早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知长方体ABCD-A1B1C1D1,AB=2,AD=1,AA1=2,P是棱A1B1上任意一点,Q是侧面对角线AB1上一点,则PD1+PQ的最小值是()A.3B.322C.5D.1+2

题目详情

如图,已知长方体ABCD-A1B1C1D1,AB=2,AD=1,AA1=2,P是棱A1B1上任意一点,Q是侧面对角线AB1上一点,则PD1+PQ的最小值是(  )
作业帮

A. 3

B.

3
2
2

C.

5

D. 1+

2

▼优质解答
答案和解析
将正方形展开,取A1B1C1D1及ABB1A1两个面,过点D1作D1Q⊥AB1于点Q,D1Q交A1B1于点P,此时PD1+PQ取最小值D1Q.作业帮
∵ABB1A1为正方形,
∴∠D1AQ=45°.
在Rt△D1QA中,AD1=AA1+A1D1=3,∠D1QA=90°,∠D1AQ=45°,
∴D1Q=sin∠D1AQ•AD1=
3
2
2

故选B.