早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=(x2+ax-a)•e1-x,其中a∈R.(Ⅰ)求函数f'(x)的零点个数;(Ⅱ)证明:a≥0是函数f(x)存在最小值的充分而不必要条件.

题目详情
已知函数f(x)=(x2+ax-a)•e1-x,其中a∈R.
(Ⅰ)求函数f'(x)的零点个数;
(Ⅱ)证明:a≥0是函数f(x)存在最小值的充分而不必要条件.
▼优质解答
答案和解析
(Ⅰ)由f(x)=(x2+ax-a)•e1-x
得f′(x)=(2x+a)e1-x-(x2+ax-a)•e1-x=-[x2+(a-2)x-2a]•e1-x=-(x+a)(x-2)•e1-x
令f′(x)=0,得x=2,或x=-a.
所以当a=-2时,函数f′(x)有且只有一个零点:x=2;
当a≠-2时,函数f′(x)有两个相异的零点:x=2,x=-a.
(Ⅱ)证明:①当a=-2时,f′(x)≤0恒成立,此时函数f(x)在(-∞,+∞)上单调递减,
所以,函数f(x)无极值.
②当a>-2时,f′(x),f(x)的变化情况如下表:
x(-∞,-a)-a(-a,2)2(2,+∞)
f′(x)-0+0-
f(x)极小值极大值
所以,a≥0时,f(x)的极小值为f(-a)=-ae1+a≤0.
又x>2时,x2+ax-a>22+2a-a=a+4>0,
所以,当x>2时,f(x)=)=(x2+ax-a)•e1-x>0恒成立.
所以,f(-a)=-ae1+a为f(x)的最小值.
故a≥0是函数f(x)存在最小值的充分条件.
③当a=-5时,f′(x),f(x)的变化情况如下表:
x(-∞,2)2(2,5)5(5,+∞)
f′(x)-0+0-
f(x)极小值极大值
因为当x>5时,f(x)=(x2-5x+5)e1-x>0,
又f(2)=-e-1<0,
所以,当a=-5时,函数f(x)也存在最小值.
所以,a≥0不是函数f(x)存在最小值的必要条件.
综上,a≥0是函数f(x)存在最小值的充分而不必要条件.