早教吧作业答案频道 -->英语-->
Acleanerwasstruckandkilledbylightningwhenworkingonthetarmac(停机坪)attheBeijingairportat8a.m.August11,2013.Policesaidwhentheyfoundthebodyheamobilephone.A.wasstillbeingheldB.wasstillhol
题目详情
A cleaner was struck and killed by lightning when working on the tarmac (停机坪) at the Beijing airport at 8 a.m. August 11, 2013. Police said when they found the body he _______ a mobile phone.
|
▼优质解答
答案和解析
B |
|
看了Acleanerwasstru...的网友还看了以下:
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
协方差cov(X+20,Y+10)=cov(X,知道了COV(X+a,Y+b)=E[(X+a)(Y 2020-06-17 …
宋代重庆的制瓷业已经达到了相当高的水平,重庆黑斑釉瓷器最重要的产地在()A.沙坪坝磁器口B.九龙坡 2020-07-15 …
已知向量a≠e,|e|=1,满足:任意t∈R.已知向量a不等于e,|e|=1,对任意t属于R,恒有 2020-07-25 …
n阶方阵A满足A^2=O,E是n阶单位阵,则A.|E-A|≠0,但|E+A|=0B|E-An阶方阵A 2020-11-02 …
求解多元一次不等式的编程47a-b-c-d-e-f-g>047b-a-c-d-e-f-g>023c- 2020-12-14 …
某校园有一片草坪和一片树林,下列关于这两个群落中动物分层现象的叙述,正确的是()A.草坪和树林中的动 2020-12-14 …
线性代数题目设A为n阶矩阵,(E-A)的行列式不等于零,证明(E+A)(E-A)*=(E-A)*(E 2020-12-23 …
a、b和D、E打架,致使a和E轻微伤。现a先起诉E、F,而E另立案起诉a、b。起诉与反诉的问题。a. 2021-01-13 …
试求矩阵B!设A,B为n阶矩阵,2A-B-AB=E,A^2=A,其中E为n阶单位矩阵.已知A=100 2021-02-05 …