早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知向量a≠e,|e|=1,满足:任意t∈R.已知向量a不等于e,|e|=1,对任意t属于R,恒有|a-te|≥|a-e|,A.a垂直eB.a垂直(a-e)C.e垂直(a-e)D.(a+e)垂直(a-e)a-te=(a-e)+(t-1)e?这样的话(a-e)+(t-1)e不就等於a+(t-2)e了吗?怎麼会等

题目详情
已知向量a≠e,|e|=1,满足:任意t∈R.
已知向量a不等于e,|e|=1,对任意t属于R,恒有|a-te|≥|a-e|,
A.a垂直e
B.a垂直(a-e)
C.e垂直(a-e)
D.(a+e)垂直(a-e)
a-te=(a-e)+(t-1)e?这样的话(a-e)+(t-1)e不就等於a+(t-2)e了吗?怎麼会等於a-te?
为什麽t^2-2aet+2ae-1≥0对任意t∈R成立就会有判别式△≤0?△≤0不是就只有一个实数根吗?
▼优质解答
答案和解析
选C
_尛鸭子,不好意思,上次做得太急出错.现在纠正:
|a-te|≥|a-e|,两边平方得:
t^2-2aet+a^2≥a^2-2ae+1
t^2-2aet+2ae-1≥0
该式对任意t∈R成立,则判别式△≤0
即△=(-2ae)^2-4(2ae-1)≤0
(ae)^2-2ae+1≤0
(ae-1)^2≤0
所以只能ae-1=0,得ae=1
所以e(a-e)=ea-e^2=1-1=0
所以,e垂直(a-e)
为什麽t^2-2aet+2ae-1≥0对任意t∈R成立就会有判别式△≤0?
因为y=t^2-2aet+2ae-1,可以看成自变量为t的抛物线,该式对任意t∈R恒大于0,即抛物线位于x轴上方,所以其判别式△≤0
△≤0不是就最多只有一个实数根吗?是的,正是这样,也正需要这样!
如果其判别式△>0,有两个实数根,则抛物线有一部分会位于x轴下方,t^2-2aet+2ae-1≥0对任意t∈R就不成立了!