早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:如图,A,K是圆O上的两点,直线FN垂直于MA,垂足为N,FN与圆O相切与点F,角AOK=2角MAK.1》求证:MN是圆O的切线:2》若点B是圆O上的一动点,BO的延长线交圆于点C,交NF于点D,连接AC并延长交于点E,当FD

题目详情
已知:如图,A,K是圆O上的两点,直线FN垂直于MA,垂足为N,FN与圆O相切与点F,角AOK=2角MAK.
1》求证:MN是圆O的切线:
2》若点B是圆O上的一动点,BO的延长线交圆于点C,交NF于点D,连接AC并延长交于点E,当FD=2EDSHI ,求角NAE的正切值
▼优质解答
答案和解析
(1)证明:∵OA=OK,
∴∠3=∠AKO.
∵∠2+∠3+∠AKO=180°,∠AOK=2∠MAK,
∴∠MAK+∠OAK=90°;
∴MN是圆O的切线.
(2)∵MN是圆O的切线,
∴∠1=∠B,
∴∠4=∠2.
又∵∠2=∠3,
∴∠4=∠3,
∴DC=DE.
∵NF切圆O于F,
∴∠OFN=90°,
又∵∠NAO=90°,
∴四边形AOFN是矩形.
∵OA=OF,
∴矩形AOFN是正方形,
∴AN=NF=OF.
∵NF切圆O于F,
∴FD2=DC?DB.
∵FD=2ED,
设ED=x,则CD=ED=x,
∴(2x)2=x(x+2r),
解得x=
2
3
r.
在△AEN中,∠ANE=90°,
cot∠AEN=
NE
AN
=
NF+FE
AN
=
3r
r
,
cot∠AEN=
NE
AN
=
NE+FE
AN
=
3r
r
=3,
同理:x=
2
3
r.
在△AEN中,∠ANE=90°.
cot∠AEN=
NE
AN
=
NE+FE
AN
=
1
3
r
r
=
1
3
,
∴∠AEN的余切值为3或
1
3