早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设∑是锥面z=√(x²+y²)(0≤z≤1)取下侧,求∫∫∑xzdydz-ydzdx+zdxdy求解

题目详情
设∑是锥面z=√(x²+y²)(0≤z≤1)取下侧,求∫∫∑ xzdydz -ydzdx + zdxdy求解
▼优质解答
答案和解析
补面Σ1:z = 1取上侧
由高斯公式:
∫∫(Σ+Σ1) xzdydz - ydzdx + zdxdy
= ∫∫∫Ω [∂/∂x (xz) + ∂/∂y (- y) + ∂/∂z (z)] dV
= ∫∫∫Ω (z - 1 + 1) dV
= ∫(0→1) z dz ∫∫Dz dxdy:x² + y² = z →Dz:πz
= ∫(0→1) πz² dz
= (1/3)πz³:(0→1)
= π/3
∫∫Σ1 xzdydz - ydzdx + zdxdy
= ∫∫Σ1 dxdy
= ∫∫D dxdy:Dxy:x² + y² = 1
= π
即∫∫Σ xzdydz - ydzdx + zdxdy
= - 2π/3