早教吧作业答案频道 -->数学-->
设x,y,z>0,且x^2+y^2+z^2=1,求证x^2/(1+9xy)+y^2/(1+9xz)+z^2/(1+9xy)≥1/4
题目详情
设x,y,z>0,且x^2+y^2+z^2=1,求证 x^2/(1+9xy)+y^2/(1+9xz)+z^2/(1+9xy)≥1/4
▼优质解答
答案和解析
题目有误吧,应该是x^2/(1+9xy)+y^2/(1+9yz)+z^2/(1+9zx)>=1/4
2010年衢州二中高三第二次高考模拟测试自选模块的不等式!
出题人是衢州二中舒金根老师,为一牛人.这是我们的二模卷.我给出我的
证明:由柯西不等式:
[(1+9xy)+(1+9yz)+(1+9zx)][x^2/(1+9xy)+y^2/(1+9yz)+z^2/(1+9zx)]>=(x+y+z)^2
上式也即x^2/(1+9xy)+y^2/(1+9yz)+z^2/(1+9zx)]>=(x+y+z)^2/[3+9(xy+yz+zx)]
注意到:因为x^2+y^2+z^2=1,所以(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)=1+2(xy+yz+zx)
于是x^2/(1+9xy)+y^2/(1+9yz)+z^2/(1+9zx)]>=[1+2(xy+yz+zx)]/[3+9(xy+yz+zx)]
只要证明[1+2(xy+yz+zx)]/[3+9(xy+yz+zx)]>=1/4即可
而上式等价于:xy+yz+zx
2010年衢州二中高三第二次高考模拟测试自选模块的不等式!
出题人是衢州二中舒金根老师,为一牛人.这是我们的二模卷.我给出我的
证明:由柯西不等式:
[(1+9xy)+(1+9yz)+(1+9zx)][x^2/(1+9xy)+y^2/(1+9yz)+z^2/(1+9zx)]>=(x+y+z)^2
上式也即x^2/(1+9xy)+y^2/(1+9yz)+z^2/(1+9zx)]>=(x+y+z)^2/[3+9(xy+yz+zx)]
注意到:因为x^2+y^2+z^2=1,所以(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)=1+2(xy+yz+zx)
于是x^2/(1+9xy)+y^2/(1+9yz)+z^2/(1+9zx)]>=[1+2(xy+yz+zx)]/[3+9(xy+yz+zx)]
只要证明[1+2(xy+yz+zx)]/[3+9(xy+yz+zx)]>=1/4即可
而上式等价于:xy+yz+zx
看了设x,y,z>0,且x^2+y...的网友还看了以下:
已知Y关于X的一次函数图像经过点(-2,4),且与Y轴的交点的纵坐标为2.求、1、y与x的函数关系 2020-04-08 …
已知函数f(x)=x2-2ln|x|与g(x)=sin(x+ψ)(ω>0)有两个公共点,则在下列函 2020-05-16 …
回归直线方程y和x可以颠倒吗(自变量与估计值可不可以颠倒)比如求得y^=ax+b,这是根据x求y的 2020-07-05 …
回归直线方程y和x可以颠倒吗(自变量与估计值可不可以颠倒)比如求得y^=ax+b,这是根据x求y的 2020-07-20 …
已知函数f(x)=lnxa+x在x=1处的切线方程为2x-y+b=0.(Ⅰ)求实数a,b的值;(Ⅱ 2020-07-31 …
一机器人从平面直角坐标系中的原点出发,首先向X轴正方向前进3个单位到点A1,再向Y轴正方向前进6个 2020-07-31 …
函数f(x)=asin(wx+π/4)+b(a,w>0)的最小正周期为π,最大值为2根号2,最小值 2020-08-03 …
d/dx×(y/x)与f'(y/x)有什么区别呢?这个问题想了好久也搞不懂,做题的时候看答案:d/d 2020-11-04 …
1.已知集合A={x│x≤-1,或x≥2},B={x│4x+p>0},且满足B真包含于A,则实数P的 2020-11-19 …
一,若函数f(x)=2x^2-3x-3在区间(-1,1)内有零点,求实数m的取值范围二,设二次函数y 2020-12-08 …