早教吧作业答案频道 -->数学-->
对弧长的曲线积分∫X²yzds,其中曲线为折线ABCD,这里A,B,C,D为(0,0,0)(0,0,2)(1,0,2)(1,3,2).分析越详细越好,有追分
题目详情
对弧长的曲线积分
∫X²yz ds,其中曲线为折线ABCD,这里A,B,C,D为(0,0,0)(0,0,2)(1,0,2)(1,3,2).分析越详细越好,有追分
∫X²yz ds,其中曲线为折线ABCD,这里A,B,C,D为(0,0,0)(0,0,2)(1,0,2)(1,3,2).分析越详细越好,有追分
▼优质解答
答案和解析
∵ds=√(dx²+dy²+dz²)
∴∫(ABCD)x²yzds=∫(ABCD)x²yz√(dx²+dy²+dz²)
∵从A(0,0,0)到B(0,0,2)时,z从0变到2,x,y值没有变化(x=y=0,dx=dy=0)
∴∫(AB)x²yzds=∫(AB)x²yz√(dx²+dy²+dz²)
=∫(0,2)0²×0×zdz
=0
∵从B(0,0,2)到C(1,0,2)时,x从0变到1,y,z值没有变化(y=0,z=2,dy=dz=0)
∴∫(BC)x²yzds=∫(BC)x²yz√(dx²+dy²+dz²)
=∫(0,1)x²×0×2dx
=0
∵从C(1,0,2)到D(1,3,2)时,y从0变到3,x,z值没有变化(x=1,z=2,dx=dz=0)
∴∫(CD)x²yzds=∫(CD)x²yz√(dx²+dy²+dz²)
=∫(0,3)1²×2×ydy
=(y²)│(0,3)
=9
故原式=∫(ABCD)x²yzds
=∫(AB)x²yzds+=∫(BC)x²yzds+=∫(CD)x²yzds
=0+0+9
=9.
∴∫(ABCD)x²yzds=∫(ABCD)x²yz√(dx²+dy²+dz²)
∵从A(0,0,0)到B(0,0,2)时,z从0变到2,x,y值没有变化(x=y=0,dx=dy=0)
∴∫(AB)x²yzds=∫(AB)x²yz√(dx²+dy²+dz²)
=∫(0,2)0²×0×zdz
=0
∵从B(0,0,2)到C(1,0,2)时,x从0变到1,y,z值没有变化(y=0,z=2,dy=dz=0)
∴∫(BC)x²yzds=∫(BC)x²yz√(dx²+dy²+dz²)
=∫(0,1)x²×0×2dx
=0
∵从C(1,0,2)到D(1,3,2)时,y从0变到3,x,z值没有变化(x=1,z=2,dx=dz=0)
∴∫(CD)x²yzds=∫(CD)x²yz√(dx²+dy²+dz²)
=∫(0,3)1²×2×ydy
=(y²)│(0,3)
=9
故原式=∫(ABCD)x²yzds
=∫(AB)x²yzds+=∫(BC)x²yzds+=∫(CD)x²yzds
=0+0+9
=9.
看了对弧长的曲线积分∫X²yzds...的网友还看了以下:
还是lingo问题road(country,country):length,xie,c;endse 2020-05-13 …
例16设A和B都是n阶矩阵,矩阵C=A00B,则C*=(A)|A|A*0.(B)|B|B*0.0| 2020-05-14 …
计算行列式:a b 0 ...0 0 0 a b ...0 0 ............0 0 0 2020-05-16 …
数学行列式a b 0 ... 0 0 0 a b ... 0 0 . . . . . . . . 2020-05-16 …
习题1.4(38页~39页)急用!明天就要交了!需要题目的我可以打出来12.如果a<b,b>0,那 2020-05-17 …
ansys直接建立有限元模型问题finish/clear/prep7n,1,0,0,0n,2,0, 2020-05-17 …
函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c 2020-06-08 …
如果abcd>0,a>c,bcd<0,则有()A.a>0,b<0,c>0,d>0B.a<0,b<0 2020-07-09 …
命题:“当abc=0时,a=0或b=0或c=0”的逆否命题为()A.若a=0或b=0或c=0,则a 2020-08-02 …
如果a、b是有理数,则下列各式子成立的是()A.如果a<0,b<0,那么a+b>0B.如果a>0,b 2021-02-02 …