早教吧作业答案频道 -->数学-->
TheprobabilitydensityfunctionofarandomvariableXisf(X)(a)showthatE(aX+b)=aE(X)+b(b)Var(aX+b)=a^2Var(X)(c)Var(X)=E(X^2)-{E(X)}^2
题目详情
The probability density function of a random variable X is f(X)
(a)show that E(aX+b)=aE(X)+b
(b)Var(aX+b)=a^2Var(X)
(c)Var(X)=E(X^2)-{E(X)}^2
(a)show that E(aX+b)=aE(X)+b
(b)Var(aX+b)=a^2Var(X)
(c)Var(X)=E(X^2)-{E(X)}^2
▼优质解答
答案和解析
(a):Proof:E[aX+b] = Sum pi(axi +b)
= Sum (pi (axi) + pi (b))
= Sum (pi axi)+ Sum ( pi b)
= aSum (pi xi)+ bSum ( pi),Sum( pi) = 1,所以 Sumaxi = aSxi
= aE[X] + b
(b) Proof:
Var(X) = E([X-E(X)]2
= E(X^2)-2XE(X) + E(X)^2,x=E(x)
= E(X^2) -2E(X)E(X) + E(X)^2
= E(X^2)-E(X)^2
(c)
Proof:Var[aX+b]
= E([(aX + b)- E(aX + b)]^2)
= (a^2E[X^2] + 2abE[X] +b^2) – (a^2E[X]^2+2abE[X]+b^2)
= a^2E[X^2] - a^2E[X]^2
= a^2(E[X^2] - E[X]^2)
= a^2Var[X]
= Sum (pi (axi) + pi (b))
= Sum (pi axi)+ Sum ( pi b)
= aSum (pi xi)+ bSum ( pi),Sum( pi) = 1,所以 Sumaxi = aSxi
= aE[X] + b
(b) Proof:
Var(X) = E([X-E(X)]2
= E(X^2)-2XE(X) + E(X)^2,x=E(x)
= E(X^2) -2E(X)E(X) + E(X)^2
= E(X^2)-E(X)^2
(c)
Proof:Var[aX+b]
= E([(aX + b)- E(aX + b)]^2)
= (a^2E[X^2] + 2abE[X] +b^2) – (a^2E[X]^2+2abE[X]+b^2)
= a^2E[X^2] - a^2E[X]^2
= a^2(E[X^2] - E[X]^2)
= a^2Var[X]
看了Theprobabilityd...的网友还看了以下:
(1)x/a+x/b-a+a/a+b(a不等于0,axa不等于bxb)(2)(mx-n)(m+n) 2020-04-07 …
1、已知a,b,c互不相等求2a-b-c/(a-b)(b-c)+2b-c-a/(b-c)(b-a) 2020-05-16 …
判定7/332和1949/1992能否表示为1/l+1/m的形式,其中l,m为正整数.若能表示,求 2020-06-12 …
解方程abc都为正数,x-a-b/c+x-b-c/a+x-c-a/bx-a-b/c(+x-b-c) 2020-06-12 …
若a,b,c是正数,解方程x-a-b/c+x-b-c/a-x-c-a/b=3 2020-06-12 …
已知a,b,c是正数,解方程(x-a-b/c)+(x-b-c/a)+(x-c-a/b)=3RTX= 2020-07-30 …
设abcd为同号的实数解方程:d/x-a-b-c+a/x-b-c-d+c/x-a-b-d+b/x- 2020-07-30 …
已知a,b,c均大于0,解方程(x-a)/(b+c)+(x-b)/(c+a)+(x-c)/(a+b) 2020-10-31 …
a,b,c为正数,解关于x的方程(x-a/b+c)+(x-b/c+a)+(x-c/a+b)=3kua 2020-11-01 …
解关于X的方程:(x-a-b)/c+(x-b-c)/a+(x-c-a)/b=3.(1/a+1/b+1 2020-11-07 …