早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知线L1:x=-1+t,y=3+2t,z=1-t;线L2:x=3+t,y=1-t,z=2求线L的方程同时过L1,L2且与平面2y-2z=5垂直平面方程是5y-2z=5!不好意思

题目详情
已知线L1:x=-1+t,y=3+2t,z=1-t; 线L2:x=3+t,y=1-t,z=2 求线L的方程 同时过L1,L2 且与平面2y-2z=5垂直
平面方程是5y-2z=5!不好意思
▼优质解答
答案和解析
设直线l和直线l1相交于M(x1,y1,z1),直线l和直线l2相交于N(x2,y2,z2),l和平面5y-2z=5垂直,则其方向向量就是平面的法向量,若设直线方向数为m,n,p,直线和平面垂直的充要条件就是,A/m=B/n=C/p,
平面方程为:Ax+By+Cz=D,这里A=0,B=5,C=-2,
x1-x2=0,
x1=-1+t1,x2=3+t2,-1+t1=3+t2,t2=t1-4,
直线的方向数(0,y1-y2,z1-z2),
(y1-y2)/5=(z1-z2)/(-2),
[3+2t1-(1-t2)]/5=(1-t1-2)/(-2),
(3+2t1-1+t1-4)/5=(-1-t1)/(-2),
t1=9,
t2=5,
x1=-1+9=8,
x2=3+5=8,
y1=21,y2=-4,y1-y2=25,
z1=-8,z2=2,z1-z2=-10,
∴直线方程为:(x-8)/0=(y-21)/25=(z+8)/(-10)