早教吧作业答案频道 -->数学-->
设f(x)在[-a,a]上二阶导函数连续(a>0),且f(0)=0,证明:在[-a,a]上至少存在一点ε,使得a^3f''(ε)=3∫[-a,a]f(x)dx
题目详情
设f(x)在[-a,a]上二阶导函数连续(a>0),且f(0)=0,证明:在[-a,a]上至少存在一点ε,使得a^3f''(ε)=3∫[-a,a]f(x)dx
▼优质解答
答案和解析
f''(x)在[-a,a]上连续,∴f''(x)在[-a,a]上能取到最大值和最小值,
设该最大值为A,该最小值为B,则A≤f''(x)≤B,x∈[-a,a]
则∫[0,x]Adt≤∫[0,x]f''(t)dt≤∫[0,x]Bdt,x∈[-a,a]
=>Ax≤f'(x)-f'(0)≤Bx
=>Ax+f'(0)≤f'(x)≤Bx+f'(0)
再从0到x积分得
Ax²/2+f'(0)x≤f(x)-f(0)≤Bx²/2+f'(0)x,∵f(0)=0
所以上式对x从-a到a积分得
a³A/3≤∫[-a,a]f(x)dx≤a³B/3,即
a³A≤3∫[-a,a]f(x)dx≤a³B
∴3∫[-a,a]f(x)dx∈[a³A,a³B]
而[a³A,a³B]为连续函数a³f''(x)在[-a,a]上的值域
∴由介值定理知存在ε∈[-a,a],使得a³f''(ε)=3∫[-a,a]f(x)dx
设该最大值为A,该最小值为B,则A≤f''(x)≤B,x∈[-a,a]
则∫[0,x]Adt≤∫[0,x]f''(t)dt≤∫[0,x]Bdt,x∈[-a,a]
=>Ax≤f'(x)-f'(0)≤Bx
=>Ax+f'(0)≤f'(x)≤Bx+f'(0)
再从0到x积分得
Ax²/2+f'(0)x≤f(x)-f(0)≤Bx²/2+f'(0)x,∵f(0)=0
所以上式对x从-a到a积分得
a³A/3≤∫[-a,a]f(x)dx≤a³B/3,即
a³A≤3∫[-a,a]f(x)dx≤a³B
∴3∫[-a,a]f(x)dx∈[a³A,a³B]
而[a³A,a³B]为连续函数a³f''(x)在[-a,a]上的值域
∴由介值定理知存在ε∈[-a,a],使得a³f''(ε)=3∫[-a,a]f(x)dx
看了设f(x)在[-a,a]上二阶...的网友还看了以下:
A.B质量分别为0.1kg和0.4kg,A.B间的动摩擦因数为0.5,放置在光滑的桌面上,要使A沿 2020-04-09 …
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f 2020-04-26 …
如果在数轴上表示a和b两个数的点的位置,那么化简|a-b|+|a+b|的结果是多少?a在0的左边, 2020-04-27 …
已知命题p:"如果函数y=f(x)在(a,b)内可导,在[a,b]上连续(图像不间断),且f(a) 2020-06-04 …
定积分证明题设f(x)在[-a,a]上连续,具有二阶连续导数,且f(0)=0证明:在[-a,a]上 2020-06-12 …
在等腰三角形ABC中,AB=AC,M为BC中点,以BC为直径作圆M.1.当角A等于多少度时,点A在 2020-07-12 …
分析并写出下面程序的输入输出的形式#includeMain(){Floata,b,c,r;Scan 2020-07-23 …
设f(x)在[-a,a]上二阶导函数连续(a>0),且f(0)=0,证明:在[-a,a]上至少存在一 2020-11-01 …
一列简谐运动从一种介质传到另一种介质中,波长由入变为3入,那么波在这种介质中的频率之比是===,波速 2020-12-09 …
C语言执行下列程序片段时输出结果是()执行下列程序片段时输出结果是()floatx=-1023.01 2020-12-15 …