早教吧作业答案频道 -->数学-->
设x,y,z>0,满足xyz+y2+z2=8,则log4x+log2y+log2z的最大值是.
题目详情
设x,y,z>0,满足xyz+y2+z2=8,则log4x+log2y+log2z的最大值是 ___.
▼优质解答
答案和解析
∵x、y、z>0,xyz+y2+z2=8
∴xy2z2=yz[8-(y2+z2)]≤yz(8-2yz)=2yz(4-yz)≤2(
)2=8,当且仅当y=z=
,x=2时等号成立
∴log4x+log2y+log2z=log4xy2z2≤log48=
故答案为:
∴xy2z2=yz[8-(y2+z2)]≤yz(8-2yz)=2yz(4-yz)≤2(
yz+4-yz |
2 |
2 |
∴log4x+log2y+log2z=log4xy2z2≤log48=
3 |
2 |
故答案为:
3 |
2 |
看了设x,y,z>0,满足xyz+...的网友还看了以下:
设x,y,z∈R+,求证 2z2-x2-y2/(x+y)+2x2-y2-z2/(y+z)≥x2+z 2020-05-16 …
若变量y与x成正比例,变量x又与z成反比例,则y与z的关系是()A.成反比例B.成正比例C.y与z 2020-05-19 …
若变量y与x成正比例,变量x又与z成反比例,则y与z的关系是()A.成反比例B.成正比例C.y与z 2020-05-19 …
R、X、Y和Z四种元素,它们常见的化合价均为+2价,且X2+与单质R不反应;X2++Z═X+Z2+ 2020-07-25 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
已知x、y、z满足2x-y-2z-6=0,已知x、y、z满足2x-y-2z-6=0,x2+y2+z2 2020-10-31 …
X、Y、Z、W四种元素,常见化合价均为+2价.己知:X2+与单质W不反应,X2++Z=X+Z2+Y+ 2020-10-31 …
用matlab解这样一个方程组怎么解不出来啊[x,y,z]=solve('x^2+y^2+z^2=r 2020-10-31 …
已知道2[√X+√(Y-1)+√(Z-2)]=X+Y+Z,求X,Y,Z2[√X+√(Y-1)+√(Z 2020-11-01 …
计算下列各式:(1)1a−b+1a+b+2aa2+b2+4a3a4+b4;(2)x2+yzx2+(y 2020-11-07 …