早教吧作业答案频道 -->数学-->
用matlab解这样一个方程组怎么解不出来啊[x,y,z]=solve('x^2+y^2+z^2=re','(x-x1)^2+(y-x1)^2+(z-x1)^2=d1','(x-x2)^2+(y-y2)^2+(z-z2)^2=d2')解出来是x=(-y^2-z^2+re)^(1/2)(-y^2-z^2+re)^(1/2)(-y^2-z^2+re)^(1/2)(-y^2-z
题目详情
用matlab 解这样一个方程组 怎么解不出来啊
[x,y,z] = solve('x^2 + y^2 + z^2 = re','(x-x1)^2 + (y-x1)^2 + (z-x1)^2 = d1','(x-x2)^2 + (y-y2)^2 + (z-z2)^2 = d2')
解出来是
x =
(-y^2-z^2+re)^(1/2)
(-y^2-z^2+re)^(1/2)
(-y^2-z^2+re)^(1/2)
(-y^2-z^2+re)^(1/2)
-(-y^2-z^2+re)^(1/2)
-(-y^2-z^2+re)^(1/2)
-(-y^2-z^2+re)^(1/2)
-(-y^2-z^2+re)^(1/2)
y =
1/3*y+1/3*z+1/3*(-y^2-z^2+re)^(1/2)+1/3*(2*y*z+2*y*(-y^2-z^2+re)^(1/2)+2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z+1/3*(-y^2-z^2+re)^(1/2)-1/3*(2*y*z+2*y*(-y^2-z^2+re)^(1/2)+2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z+1/3*(-y^2-z^2+re)^(1/2)+1/3*(2*y*z+2*y*(-y^2-z^2+re)^(1/2)+2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z+1/3*(-y^2-z^2+re)^(1/2)-1/3*(2*y*z+2*y*(-y^2-z^2+re)^(1/2)+2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z-1/3*(-y^2-z^2+re)^(1/2)+1/3*(2*y*z-2*y*(-y^2-z^2+re)^(1/2)-2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z-1/3*(-y^2-z^2+re)^(1/2)-1/3*(2*y*z-2*y*(-y^2-z^2+re)^(1/2)-2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z-1/3*(-y^2-z^2+re)^(1/2)+1/3*(2*y*z-2*y*(-y^2-z^2+re)^(1/2)-2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z-1/3*(-y^2-z^2+re)^(1/2)-1/3*(2*y*z-2*y*(-y^2-z^2+re)^(1/2)-2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
z =
(-y^2-z^2+re)^(1/2)+(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
(-y^2-z^2+re)^(1/2)+(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
(-y^2-z^2+re)^(1/2)-(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
(-y^2-z^2+re)^(1/2)-(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
-(-y^2-z^2+re)^(1/2)+(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
-(-y^2-z^2+re)^(1/2)+(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
-(-y^2-z^2+re)^(1/2)-(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
-(-y^2-z^2+re)^(1/2)-(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
怎么右边还有x,y,z啊,
[x,y,z] = solve('x^2 + y^2 + z^2 = re','(x-x1)^2 + (y-x1)^2 + (z-x1)^2 = d1','(x-x2)^2 + (y-y2)^2 + (z-z2)^2 = d2')
解出来是
x =
(-y^2-z^2+re)^(1/2)
(-y^2-z^2+re)^(1/2)
(-y^2-z^2+re)^(1/2)
(-y^2-z^2+re)^(1/2)
-(-y^2-z^2+re)^(1/2)
-(-y^2-z^2+re)^(1/2)
-(-y^2-z^2+re)^(1/2)
-(-y^2-z^2+re)^(1/2)
y =
1/3*y+1/3*z+1/3*(-y^2-z^2+re)^(1/2)+1/3*(2*y*z+2*y*(-y^2-z^2+re)^(1/2)+2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z+1/3*(-y^2-z^2+re)^(1/2)-1/3*(2*y*z+2*y*(-y^2-z^2+re)^(1/2)+2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z+1/3*(-y^2-z^2+re)^(1/2)+1/3*(2*y*z+2*y*(-y^2-z^2+re)^(1/2)+2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z+1/3*(-y^2-z^2+re)^(1/2)-1/3*(2*y*z+2*y*(-y^2-z^2+re)^(1/2)+2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z-1/3*(-y^2-z^2+re)^(1/2)+1/3*(2*y*z-2*y*(-y^2-z^2+re)^(1/2)-2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z-1/3*(-y^2-z^2+re)^(1/2)-1/3*(2*y*z-2*y*(-y^2-z^2+re)^(1/2)-2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z-1/3*(-y^2-z^2+re)^(1/2)+1/3*(2*y*z-2*y*(-y^2-z^2+re)^(1/2)-2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
1/3*y+1/3*z-1/3*(-y^2-z^2+re)^(1/2)-1/3*(2*y*z-2*y*(-y^2-z^2+re)^(1/2)-2*z*(-y^2-z^2+re)^(1/2)-2*re+3*d1)^(1/2)
z =
(-y^2-z^2+re)^(1/2)+(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
(-y^2-z^2+re)^(1/2)+(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
(-y^2-z^2+re)^(1/2)-(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
(-y^2-z^2+re)^(1/2)-(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
-(-y^2-z^2+re)^(1/2)+(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
-(-y^2-z^2+re)^(1/2)+(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
-(-y^2-z^2+re)^(1/2)-(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
-(-y^2-z^2+re)^(1/2)-(2*y*y2-y2^2-z^2-y^2-z2^2+d2+2*z*z2)^(1/2)
怎么右边还有x,y,z啊,
▼优质解答
答案和解析
LZ好,[aa,bb]=solve('14.14*a+11.22*a^2+222272*(0.015*a+1)^1.5-111136=7.07*b+5.61*b^2+111136*(0.015*b+1)^1.5+1800','7.07*a^2+7.486*a^3+11111111*(0.015*a+1)^1.5*(0.012*a-8/15)+1000=3.535*b^2+3.743*b^3+11111111*(0.015*b+1)^1.5*(0.006*b-4/15)','a','b')
我改了一点你的东西,你看一下是不是你的原意
直接就行.
你得多等等.注意左下角的状态,如果出现Busy的话,就说明还在算.18725希望对你有帮助!
我改了一点你的东西,你看一下是不是你的原意
直接就行.
你得多等等.注意左下角的状态,如果出现Busy的话,就说明还在算.18725希望对你有帮助!
看了用matlab解这样一个方程组...的网友还看了以下:
高斯公式求球体的曲面积分,3Q!设S为球面x方+y方+z方=a方 的外侧,S所围成的球体G的体积V 2020-05-16 …
已知复数z=a+bi若z+z的共轭复数和z*z的共轭复数是方程x平方-3x+2=0的两个根求a,b 2020-06-02 …
判断三维空间中一点在直线上的方法我想的是通过三维空间直线坐标的两点式来确定:有3个点,p,a,b. 2020-06-14 …
复数问题一箩筐1.已知Z²=8+6i求Z³-16Z-100/Z的值2.已知Z-a/Z+a(a属于实 2020-07-06 …
设变换为u=x-2y、v=x+ay,可把方程d²z/dx²+d²z/(dxdy)-d²z/dy²= 2020-07-09 …
x^2+y^2+z^2=a^2被z=a/4与z=a/2之间的面积?为什么不可以用定积分用圆周2πr 2020-07-22 …
已知复数ω满足ω-4=(3-2ω)i(i为虚数单位),z=5/ω+|z-2|,若z的平方根为a=b 2020-08-02 …
(2012•玉林)如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上, 2020-08-02 …
1.解方程(a-b)*x^2-(a^2+ab+b^2)x+ab(2a+b)=02.若x^2-11x+ 2020-10-31 …
如果(X的平方Y)的A次方乘(XY的B次方Z)的立方乘(Y的平方Z的3立方)2次方,求A,B,C的值 2020-10-31 …