早教吧作业答案频道 -->其他-->
已知函数f(x)=e的x次方,g(x)=x-m,m∈R.(1)若曲线y=f(x)与直线y=g(x)相切,求实数m的值;(2)记h(x)=f(x)•g(x),求h(x)在[0,1]上的最大值;(3)当m=0时,试比较e的f(x-2)次方
题目详情
已知函数f(x)=e的x次方,g(x)=x-m,m∈R.
(1)若曲线y=f(x)与直线y=g(x)相切,求实数m的值;
(2)记h(x)=f(x)•g(x),求h(x)在[0,1]上的最大值;
(3)当m=0时,试比较e的f(x-2)次方与g(x)的大小.
(1)若曲线y=f(x)与直线y=g(x)相切,求实数m的值;
(2)记h(x)=f(x)•g(x),求h(x)在[0,1]上的最大值;
(3)当m=0时,试比较e的f(x-2)次方与g(x)的大小.
▼优质解答
答案和解析
(1)设切点P为(x₀,e^x₀)
f'(x)=e^x,代入:f‘(x₀)=e^x₀=切线的斜率=1
∴x₀=1,P(1,e),代入g(x):
e=1-m,
∴m=1-e
(2)h'(x)=f'(x)g(x)+f(x)g'(x)=e^x·(x+e-1)+e^x=e^x(x+e) 当x∈[0,1]时恒大于0.
∴在区间内h(x)单调递增,h(x)的最大值=h(1)=e²
(3)m=0,g(x)=x
x<0时,e^f(x-2)>0,
∴e^f(x-2)>g(x)
x≥0时,设h(x)=e^f(x-2)-g(x)
h’(x)=f'(x-2)e^f(x-2)=[e^(x-2)]'e^f(x-2)=e^(x-2)·e^e^(x-2)>0
∴x∈[0,+∞)时,h(x)单调递增
h(x)≥h(0)=e^e^(-2)-0>0
∴e^f(x-2)-g(x)>0
即e^f(x-2)>g(x)
综上:x∈R,e^f(x-2)>g(x)
f'(x)=e^x,代入:f‘(x₀)=e^x₀=切线的斜率=1
∴x₀=1,P(1,e),代入g(x):
e=1-m,
∴m=1-e
(2)h'(x)=f'(x)g(x)+f(x)g'(x)=e^x·(x+e-1)+e^x=e^x(x+e) 当x∈[0,1]时恒大于0.
∴在区间内h(x)单调递增,h(x)的最大值=h(1)=e²
(3)m=0,g(x)=x
x<0时,e^f(x-2)>0,
∴e^f(x-2)>g(x)
x≥0时,设h(x)=e^f(x-2)-g(x)
h’(x)=f'(x-2)e^f(x-2)=[e^(x-2)]'e^f(x-2)=e^(x-2)·e^e^(x-2)>0
∴x∈[0,+∞)时,h(x)单调递增
h(x)≥h(0)=e^e^(-2)-0>0
∴e^f(x-2)-g(x)>0
即e^f(x-2)>g(x)
综上:x∈R,e^f(x-2)>g(x)
看了已知函数f(x)=e的x次方,...的网友还看了以下:
若f(x)的导函数是开口向上,顶点坐标为(1,-更号3)则曲线f(x)上任一点的切线的倾斜角的取值 2020-04-11 …
若抛物线y=ax²+bx+c与x轴交于AB两点,与y轴交于点C,我们称△ABC为抛物线的奠基三角形 2020-05-16 …
关于渐近线若x→∞,f(x)/x→a,[f(x)-ax]→b,则斜渐进线为y=ax+b(如何证明? 2020-06-20 …
(1/2)已知函数f(x)=ax^2+1(a>0),g(x)=x^3+bx.若曲线f(x)与曲线g 2020-06-27 …
已知抛物线y=x^2-4x+1,将此抛物线沿x轴方向向左平移四个单位长度,得到一条新的抛物线.1. 2020-06-27 …
1,曲线y=x^2上哪些点处的切线的倾角为45°,60°,2,若f(x)处处有切线,则函数y=f( 2020-07-09 …
抛物线y=x-(2m-1)x-6m与x轴交于两点(x1,0)和(x2,0)若,x1x2=x1+x2 2020-07-17 …
求满足以下条件的直线的函数解析式:(1)若直线与直线y=2x+3关于x轴对称(2)若直线与直线y= 2020-07-17 …
抛物线y2=4x的准线与x轴交于M点,过M作直线与抛物线交于A、B,若AB的垂直平分线与x轴交于E 2020-07-31 …
P是抛物线y=2(x-2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B 2020-11-04 …