早教吧作业答案频道 -->其他-->
已知:▱ABCD中,AC⊥CD,点E在射线CB上,点F在射线DC上,且∠EAF=∠B.(1)当∠BAD=135°时,若点E在线段CB上,点F在线段DC上(如图1),求证:BE+22DF=AD;(2)当∠BAD=120°时,若点E在线段CB上
题目详情
已知:▱ABCD中,AC⊥CD,点E在射线CB上,点F在射线DC上,且∠EAF=∠B.
(1)当∠BAD=135°时,若点E在线段CB上,点F在线段DC上(如图1),求证:BE+
DF=AD;
(2)当∠BAD=120°时,若点E在线段CB上,点F在线段DC上(如图2),则AD、BE、DF之间的数量关系是______;
(3)当∠BAD=120°时,连接EF,设直线AF、直线BC交于点Q,当AB=3,BE=2时,求EQ和EF的长.
(1)当∠BAD=135°时,若点E在线段CB上,点F在线段DC上(如图1),求证:BE+
| ||
2 |
(2)当∠BAD=120°时,若点E在线段CB上,点F在线段DC上(如图2),则AD、BE、DF之间的数量关系是______;
(3)当∠BAD=120°时,连接EF,设直线AF、直线BC交于点Q,当AB=3,BE=2时,求EQ和EF的长.
▼优质解答
答案和解析
(1)证明:∵∠BAD=135°,且∠BAC=90°,
∴∠CAD=45°,即△ABC、△ADC都是等腰直角三角形;
∴AD=
AC,且∠D=∠ACB=45°;
又∵∠EAC=∠DAF=45°-∠FAC,
∴△AEC∽△AFD,
∴AE:AD=EC:FD=1:
,即EC=
FD;
∴BC=BE+
DF,即BE+
DF=AD.
(2)2BE+DF=AD;理由如下:
取BC的中点G,连接AG;
易知:∠DAC=∠BCA=30°,∠B=∠D=60°;
在Rt△ABC中,G是斜边BC的中点,则:
∠AGE=60°,AD=BC=2AG;
∵∠GAD=∠AGE=60°=∠EAF,
∴∠EAG=∠FAD=60°-∠GAF;
又∵∠AGE=∠D=60°,
∴△AGE∽△ADF,得:AG:AD=EG:FD=1:2;
即FD=2EG;
∴BC=2BG=2(BE+EG)=2BE+2EG=2BE+DF,即AD=2BE+DF.
(3)在Rt△ABC中,∠ACB=30°,AB=3,则BC=AD=6,EC=4.
①如图(2)①,过F作FH⊥BQ于H;
同(2)可知:DF=2EG=2,CF=CD-DF=1;
在Rt△CFH中,∠FCH=60°,则:
CH=
,FH=
;
易知:△ADF∽△QCF,由DF=2CF,可得CQ=
AD=3;
∴EQ=EC+CQ=4+3=7;
在R
∴∠CAD=45°,即△ABC、△ADC都是等腰直角三角形;
∴AD=
2 |
又∵∠EAC=∠DAF=45°-∠FAC,
∴△AEC∽△AFD,
∴AE:AD=EC:FD=1:
2 |
| ||
2 |
∴BC=BE+
| ||
2 |
| ||
2 |
(2)2BE+DF=AD;理由如下:
取BC的中点G,连接AG;
易知:∠DAC=∠BCA=30°,∠B=∠D=60°;
在Rt△ABC中,G是斜边BC的中点,则:
∠AGE=60°,AD=BC=2AG;
∵∠GAD=∠AGE=60°=∠EAF,
∴∠EAG=∠FAD=60°-∠GAF;
又∵∠AGE=∠D=60°,
∴△AGE∽△ADF,得:AG:AD=EG:FD=1:2;
即FD=2EG;
∴BC=2BG=2(BE+EG)=2BE+2EG=2BE+DF,即AD=2BE+DF.
(3)在Rt△ABC中,∠ACB=30°,AB=3,则BC=AD=6,EC=4.
①如图(2)①,过F作FH⊥BQ于H;
同(2)可知:DF=2EG=2,CF=CD-DF=1;
在Rt△CFH中,∠FCH=60°,则:
CH=
1 |
2 |
| ||
2 |
易知:△ADF∽△QCF,由DF=2CF,可得CQ=
1 |
2 |
∴EQ=EC+CQ=4+3=7;
在R
看了已知:▱ABCD中,AC⊥CD...的网友还看了以下:
正方体ABCD-A1B1C1D1中,E在A'B上,F在B'D'上,且BE=B'F,求证:EF‖平面 2020-05-16 …
高一数学题在正方体ABCD—A'B'C'D'中,E在A'B上,F在B'D'上,且BE=B'F,求证 2020-05-16 …
如图,四边形ABCD是平行四边形,点E、F分别为AD、BC边上的点,且AE=CF求证:四边形BED 2020-05-16 …
给定关系模式R(U,F),U={A,B,C,D,E,F},F={B→F,D→A,A→E, AE→B} 2020-05-26 …
如图1,若AB∥CD,则有∠B+∠D=∠E.(1)将点E移至图2的位置时,则∠B、∠D,∠E有什么 2020-06-12 …
在图d中,AB‖CD,∠E+∠G与∠B+∠F+∠D又有何关系? 2020-06-12 …
已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直 2020-06-27 …
已知A,C,E和点B,F,D分别是角O两边上的点,且AB平行ED,BC平行EF,求证:AF平行CD 2020-07-09 …
如图1,若AB∥CD,则有∠B+∠D=∠E.1.将点E移至图2的位置时,∠D,∠B,∠E有什么关系 2020-07-20 …
求助一道数学题~设f(x)在〔0,1〕上连续,在(0,1)内可导,且f(0)=0,f(1)=1,a、 2020-12-28 …