早教吧作业答案频道 -->其他-->
(2013•海淀区一模)设A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,BxB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y=3,且|△x|-|△y|≠0,则称点B为点A的“相关点”,记作
题目详情
(2013•海淀区一模)设A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,BxB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y=3,且|△x|-|△y|≠0,则称点B为点A的“相关点”,记作:B=i(A).
(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;
(Ⅱ)已知点H(9,3),L(5,3),若点M满足M=i(H),L=i(M),求点M的坐标;
(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)为一个定点,点列{Pi}满足:Pi=i(Pi-1),其中i=1,2,3,…,n,求|P0Pn|的最小值.
(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;
(Ⅱ)已知点H(9,3),L(5,3),若点M满足M=i(H),L=i(M),求点M的坐标;
(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)为一个定点,点列{Pi}满足:Pi=i(Pi-1),其中i=1,2,3,…,n,求|P0Pn|的最小值.
▼优质解答
答案和解析
(I)因为|△x|+|△y=3,且|△x|-|△y|≠0,|△x|与|△y|为非零整数,
故|△x|=1,|△y|=2;或|△x|=2,|△y|=1,所以点(0,0)的“相关点”有8个,
分别为:(1,2)、(1,-2)、(-1,2)、(-1,-2)、(2,1)、(2,-1)、
(-2,1)、(-2,-1).…(1分)
又因为 (△x)2+(△y)2=5,即(xi−0)2+(yi−0)2=5,
所以,这些可能值对应的点在以(0,0)为圆心,以
为半径的圆上.…(3分)
(II)设M(xM,yM),因为M=i(H),L=i(M),
所以有|xM-9|+|yM-3|=3,|xM-5|+|yM-3|=3,…(5分)
所以|xM-9|=|xM-5|,所以xM=7,故yM=2 或 yM=4,
所以M(7,2),或M(7,4).…(7分)
(III)当n=2k,且 k∈N* 时,|P0Pn|的最小值为0.例如:P0(x0,y0 ),
P1 (x0+3,y0 ),P2((x0,y0 ),显然,P0=i(P1),P1=i(P2),此时,|P0P2|=0.…(8分)
当n=1时,可知,|P0Pn|的最小值为
.…(9分)
当n=3 时,对于点P,按照下面的方法选择“相关点”,可得P3(x0,y0+1):
由P0(x0,y0 ),依次找出“相关点”分别为P1(x0+2,y0+1),P2(x0+1,y0+3),P3(x0,y0+1).
此时,|P0P3|=1,故|P0Pn|的最小值为1.…(11分)
然后经过3次变换回到P3(x0,y0+1),故|P0Pn|的最小值为1.
当n=2k+1,k>1,k∈N* 时,经过2k次变换回到初始点P0(x0,y0 ),
故经过2k+1次变换回到P3(x0,y0+1),故|P0Pn|的最小值为1.
综上,当 n=1 时,|P0Pn|的最小值为
.
当当n=2k,k∈N* 时,|P0Pn|的最小值为0,
当n=2k+1,k∈N* 时,|P0Pn|的最小值为1. …(13分)
故|△x|=1,|△y|=2;或|△x|=2,|△y|=1,所以点(0,0)的“相关点”有8个,
分别为:(1,2)、(1,-2)、(-1,2)、(-1,-2)、(2,1)、(2,-1)、
(-2,1)、(-2,-1).…(1分)
又因为 (△x)2+(△y)2=5,即(xi−0)2+(yi−0)2=5,
所以,这些可能值对应的点在以(0,0)为圆心,以
5 |
(II)设M(xM,yM),因为M=i(H),L=i(M),
所以有|xM-9|+|yM-3|=3,|xM-5|+|yM-3|=3,…(5分)
所以|xM-9|=|xM-5|,所以xM=7,故yM=2 或 yM=4,
所以M(7,2),或M(7,4).…(7分)
(III)当n=2k,且 k∈N* 时,|P0Pn|的最小值为0.例如:P0(x0,y0 ),
P1 (x0+3,y0 ),P2((x0,y0 ),显然,P0=i(P1),P1=i(P2),此时,|P0P2|=0.…(8分)
当n=1时,可知,|P0Pn|的最小值为
5 |
当n=3 时,对于点P,按照下面的方法选择“相关点”,可得P3(x0,y0+1):
由P0(x0,y0 ),依次找出“相关点”分别为P1(x0+2,y0+1),P2(x0+1,y0+3),P3(x0,y0+1).
此时,|P0P3|=1,故|P0Pn|的最小值为1.…(11分)
然后经过3次变换回到P3(x0,y0+1),故|P0Pn|的最小值为1.
当n=2k+1,k>1,k∈N* 时,经过2k次变换回到初始点P0(x0,y0 ),
故经过2k+1次变换回到P3(x0,y0+1),故|P0Pn|的最小值为1.
综上,当 n=1 时,|P0Pn|的最小值为
5 |
当当n=2k,k∈N* 时,|P0Pn|的最小值为0,
当n=2k+1,k∈N* 时,|P0Pn|的最小值为1. …(13分)
看了(2013•海淀区一模)设A(...的网友还看了以下:
关于二阶导数!二阶导数也很难,就是原函数导数的导数.二阶导数可以记作y‘‘=d^2y/dx^2即y' 2020-03-30 …
椭圆Ex^2/5+y^2/4=1的右焦点F,直线l与曲线x^2+y^2=4相切且交椭圆E于AB两点 2020-05-13 …
当a为何值时,直线L1:x+y-a=0与圆O:x^2+y^2=2.(1)相交(2)相切(3)相离. 2020-06-09 …
如果记y=x^2/(1+x^2)=f(x).则f(1)表示当x=1是y的值,即f(1)=1^2/( 2020-06-12 …
关于二次函数的题目一个斜抛物体的水平运动距离记为x(m),对应高度记为y(m),y是关于x的二次函 2020-07-10 …
设定圆(x+根号3)^2+y^2=16,动圆N过点F(根号3,0)且与圆M相切,记圆心N的轨迹为E 2020-07-26 …
《歇洛克·福尔摩斯归来记》下列四个函数为减函数的是Ay=2^xBy=log2(1/2)^2Cy=x 2020-08-02 …
《歇洛克·福尔摩斯归来记》下列四个函数为减函数的是Ay=2^xBy=log2(1/2)^2Cy=x 2020-08-02 …
二阶导数~二阶导数也很难,就是原函数导数的导数.二阶导数可以记作y‘‘=d^2y/dx^2即y'' 2020-08-02 …
急~实数x,y,z满足x+y+z=0且x^2+y^2+z^2=1.记m为x^2,y^2,z^2中的最 2020-11-01 …