早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知抛物线y=ax2+bx+3经过点A(-1,0),B(3,0),交y轴于点C,M为抛物线的顶点,连接MB.(1)求该抛物线的解析式;(2)在y轴上是否存在点P满足△PBM是直角三角形?若存在,请求出P点的

题目详情
已知抛物线y=ax2+bx+3经过点A(-1,0),B(3,0),交y轴于点C,M为抛物线的顶点,连接MB.
(1)求该抛物线的解析式;
(2)在y轴上是否存在点P满足△PBM是直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由;
(3)设Q点的坐标为(8,0),将该抛物线绕点Q旋转180°后,点M的对应点为M′,求∠MBM′的度数.
▼优质解答
答案和解析
(1)∵抛物线y=ax2+bx+3经过点A(-1,0),B(3,0)),(0,-).

(3)由题意可知:B(3,0),M(1,4),Q(8,0),点M,M′关于点Q中心对称,
∴M′(15,-4),
连结M′B,并延长M′B交y轴于点D,
由yM′D=-+1,
∴D(0,1).
连结MD,
∵在Rt△DFM和Rt△DOB中

∴Rt△DFM≌Rt△DOB(SAS),
∴MD=BD.
∴△DBM是等腰直角三角形,
∴∠DBM=45°,
∴∠MBM′=135°.