早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,长方体ABCD-A1B1C1D1中,E是BC的中点,M,N分别是AE,CD1的中点,AD=AA1=a,AB=2a,(Ⅰ)求证:MN∥平面ADD1A1;(Ⅱ)求异面直线AE和CD1所成角的余弦值.

题目详情
如图,长方体ABCD-A1B1C1D1中,E是BC的中点,M,N分别是AE,CD1的中点,AD=AA1=a,AB=2a,

(Ⅰ)求证:MN∥平面ADD1A1
(Ⅱ)求异面直线AE和CD1所成角的余弦值.
▼优质解答
答案和解析
(Ⅰ)取CD的中点K,连结MK,NK
∵长方体ABCD-A1B1C1D1中,M、N、K分别为AK、CD1、CD的中点
∴MK∥AD,NK∥DD1
∵MK、NK⊄面ADD1A1,AD⊂面ADD1A1,DD1⊂面ADD1A1
∴MK∥面ADD1A1,NK∥面ADD1A1
∵MK、NK是平面MNK内的相交直线
∴面MNK∥面ADD1A1
又∵MN⊂面MNK,∴MN∥面ADD1A1
(Ⅱ)取A1D1的中点F,连结AF、EF,
D1F
.
.
CE,从而四边形CEFD1为平行四边形,
∴EF∥CD1,可得∠AEF(或其补角)为异面直线AE和CD1所成的角 
在△AEF中,可得
AF=
5
a
2
AE=
17
a
2
EF=CD1=
5

由余弦定理,得
cos∠AEF=
AE2+EF2−AF2
2AE•EF
8
85
85
 
∴异面直线AE和CD1所成角的余弦值为
8
85
85