早教吧 育儿知识 作业答案 考试题库 百科 知识分享

极限问题[根号(1+x)-根号(1-x)]与x是等价无穷小量是怎样计算出来的?

题目详情
极限问题
[根号(1+x)-根号(1-x)]与x是等价无穷小量
是怎样计算出来的?
▼优质解答
答案和解析
[根号(1+x)-根号(1-x)]与x是等价无穷小量,既要证明:(根号
(1+x)-根号(1-x))/x在x趋于0时等于1
分子有理化得:2/(根号(1+x)+根号(1-x))
当x趋于0时,此式极限为1,故得证~