早教吧作业答案频道 -->数学-->
总是搞混,记了公式这个忘了这个还不会运用.头晕死了++.这之前我都学的挺好的,就是老师教到这单元我怎么都没办法听懂.看着有些人尽管难但还是能听懂,而我听得云里雾里的,如果哪位大神
题目详情
总是搞混,记了公式这个忘了这个还不会运用.头晕死了+_+.这之前我都学的挺好的,就是老师教到这单元我怎么都没办法听懂.看着有些人尽管难但还是能听懂,而我听得云里雾里的,如果哪位大神有什么有用的方法、建议,以及能帮到我的资料都发上来,
▼优质解答
答案和解析
首先你因式分解之前的整式部分都学得好吗?因式分解其实就是之前公式的逆运用而已.第一节提取公因式,首先要找出一个多项式各个单项式的系数的最大公约数,相同字母的最低次项,然后用每一个单项式去除这个公因式,剩下的都放入公因式后面的括号里,记住括号里的各项可能能合并同类项,合并之后可能还能提取公因式;完全平方和平方差,关键在于找出多项式中a,b的对应内容.我上传个附件,不会做的可以去问你的数学老师,希望对你有用.
囧,题目里边我用公式编辑的复制不上来.
提取公因式
分解因式:1、对象一定是多项式;2、分解的结果一定是几个整式相乘;3、要分解到不能分解为止.
提取公因式包括:系数的最大公约数+相同字母的最小次数项(系数、字母、指数)
一、单个或多个字母
1、 2、a2b+ab2 3、3x2-6x3 4、9abc-6a2b2+12abc2
5、3x2+x 6、4x+6 7、3mb2-2nb 8、7y2-21y
9、8a3b2+12a2b-ab 10、7x3y2-42x2y3 11、4a2b – 2ab2 + 6abc
12、9abc-6a2b2+12abc2
13、6a3b-9a2b2c 14、6a3b-9a2b2c+3a2b 15、-2m3+8m2-12m
16、
部分提取公因式
1、ab+ac+b+c 2、
二、有括号的公因式(将括号看作一个整体,注意括号中的形式要一致)
只有一个括号:
1、7(a-3) – b(a-3) 2、3a(x+y)-2b(x+y) 3、
4、 5、10(a-b)2-5(b-a)3 6、
7、m(2a+b)-3(2a+b) 8、m(a+b-c)-2c(c-b-a) 9、x(a-x)(a-y)-y(x-a)(y-a)
10、m(2a+3b-4c)+2n(4c-2a-3b) 11、-7x(xyz+3yz)+5x(-2xyz+4yz)
两个括号:
1、(2a+b)(2a-3b)-3a(2a+b) 2、2m(m-7)-(7-m)(m-3)
3、 4、
5、 6、(m+n)(a+b)+(m+n)(x+y)
三、应用因式分解求代数式的值
(1)已知:,求的值
(2)数字能被整除吗?
(3)先因式分解再求值:,其中
(4)证明:能被整除
(5)若x2+3x-2=0,求2x3+6x2-4x的值
四、应用因式分解思想解决数字计算问题
1、7/9 ×13-7/9 ×6+7/9 ×2 2、 -2.67×132+25×2.67+7×2.67
3、121×0.13+12.1×0.9-12×1.21 4、23.1×24-46.2×7
平方差公式因式分解
公式a-b=(a+b)(a-b).平方差因式分解形式特点:两项;都是2次方;异号.
一、没有系数的字母
1、a-b 2、x2-y2 3、-x2+y2
4、x4-y4
二、有系数的字母
1、4x2-9y2 2、16a2-9b2 3、 m2-0.01n2
4、 5、 6、
7、 8、36-x2 9、a2-b2
10、x2y2-z2 11、x4-81y4 12、-x2+(2x-3)2
三、有括号
1、4a2-(b+c)2 2、16(m-n)2-9(m+n)2 3、9x2-(x-2y) 2
4、(4x-3y)2-16y2 5、-4(x+2y)2+9(2x-y)2 6、(x+p)2-(x+q)2
7、-9x2+(-y)2 8、 9、
10、 11、(4x-5)-1 12、
四、有公因式的平方差
1、 2、 3、a5-a3
4、32a3-50ab2 5、ab-ab 6、12x-3y
7、x5y3-x3y5 8、
五、应用平方差解答
1、 2、(1-)(1-)(1-)…(1-)(1-)
3、已知:4m+n=90,2m-3n=10,求(m+2n)2-(3m-n)2的值.
4、已知x2-y2=-1 ,x+y=,则x-y为多少?
5、式子能被20~30之间的整数 整除.
6、 7、 8、
9、当为整数时,能被28整除吗?请说明理由.
完全平方因式分解
完全平方:三项;两个2次项.
判断是否是完全平方:
1、(1)a2-4a+4 (2)x2+4x+4y2 (3)4a2+2ab+b2
(4)a2-ab+b2 (5)x2-6x-9 (6)a2+a+0.25
一、简单完全平方
1、a2+6a+9 2、a2-6a+9 3、 4、
二、有系数的整体法
1、9x2-6x+1 2、4x2-12xy2+9y4 3、16x4-72x2y2+81y4 4、
5、 6、 7、
8、-4xy-4x2-y2
三、有括号的整体法
1、(x+y)2+4 - 4(x+y) 2、 3、
4、 5、(x+y)2-18(x+y)+81 6、4-12(x-y)+9(x-y)2
7、(x+y)2-18(x+y)+81 8、16-24(a-b)+9(a-b)2
四、有公因式的完全平方
1、4x3y+4x2y2+xy3 2、 3、a2+ab+b2
4、4mn2-4m2n-n3 5、
五、不是完全平方一般形式的,整理之后再分解
1、(x-y)2-4(x-y-1) 2、 3、(a2+b2)2-4a2b2
4、 5、(x2+x+1)(x2+x)+
应用完全平方因式分解解答实际问题
1、是一个完全平方式,那么之值为( )
2、( ) =
3、已知求的值.
4、若 x2-6xy+9y2=0,则 的值为多少?
5、已知:x2+4xy=3,2xy+9y2=1.则x+3y的值为多少?
6、若y2-8y+m-1是完全平方式,则m=( )
7、已知2a-b=3,求-8a2+8ab-2b2 的值
8、已知x+y=,xy=,求x3y+2x2y2+xy3的值
9、已知x2+y2+2x-6y+10=0,求x、y的值.
10、已知矩形的周长为28cm,两边长为x、y,且x、y满足x2(x+y)-y2(x+y)=0,求该矩形的面积.
一.分组分解练习
2. 3.
4.1-a2+2ab-b2 5.1-a2-b2-2ab
6.x2+2xy+y2-1 7.x2-2xy+y2-1
8.x2-2xy+y2-z2 9.
10. 11.
12.x2 - 4y2 +x + 2y 13.
14. 15.ax-a+bx-b
16.a2-b2-a+b 17.4a2-b2+2a-b
二.综合训练
1. 2. 997 2– 9
3.
4. 若是完全平方式,求的值.
5.已知求的值.
6.已知x+2y=,x-y= ,求x2+xy-2y2 的值.
7.已知a+b=2,求的值.
8.已知:a=10000,b=9999,求a2+b2-2ab-6a+6b+9的值.
9.若,求的最小值.
10.已知求的值.
11. 已知a, b, c是△ABC的三条边长,当 b2+2ab = c2+2ac时,试判断△ABC属于哪一类三角形
12. 求证:对于任何自然数n ,的值都能被6整除.
13.若a、b、c为△ABC的三边,且满足a2+b2+c2-ab-bc-ca=0.探索△ABC的形状,并说明理由.
14.分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).
15.分解因式4x2-4xy+y2+6x-3y-10.
15. 有两个孩子的年龄分别为x、y岁,已知x+ xy=99, 试求这两个孩子的年龄.
囧,题目里边我用公式编辑的复制不上来.
提取公因式
分解因式:1、对象一定是多项式;2、分解的结果一定是几个整式相乘;3、要分解到不能分解为止.
提取公因式包括:系数的最大公约数+相同字母的最小次数项(系数、字母、指数)
一、单个或多个字母
1、 2、a2b+ab2 3、3x2-6x3 4、9abc-6a2b2+12abc2
5、3x2+x 6、4x+6 7、3mb2-2nb 8、7y2-21y
9、8a3b2+12a2b-ab 10、7x3y2-42x2y3 11、4a2b – 2ab2 + 6abc
12、9abc-6a2b2+12abc2
13、6a3b-9a2b2c 14、6a3b-9a2b2c+3a2b 15、-2m3+8m2-12m
16、
部分提取公因式
1、ab+ac+b+c 2、
二、有括号的公因式(将括号看作一个整体,注意括号中的形式要一致)
只有一个括号:
1、7(a-3) – b(a-3) 2、3a(x+y)-2b(x+y) 3、
4、 5、10(a-b)2-5(b-a)3 6、
7、m(2a+b)-3(2a+b) 8、m(a+b-c)-2c(c-b-a) 9、x(a-x)(a-y)-y(x-a)(y-a)
10、m(2a+3b-4c)+2n(4c-2a-3b) 11、-7x(xyz+3yz)+5x(-2xyz+4yz)
两个括号:
1、(2a+b)(2a-3b)-3a(2a+b) 2、2m(m-7)-(7-m)(m-3)
3、 4、
5、 6、(m+n)(a+b)+(m+n)(x+y)
三、应用因式分解求代数式的值
(1)已知:,求的值
(2)数字能被整除吗?
(3)先因式分解再求值:,其中
(4)证明:能被整除
(5)若x2+3x-2=0,求2x3+6x2-4x的值
四、应用因式分解思想解决数字计算问题
1、7/9 ×13-7/9 ×6+7/9 ×2 2、 -2.67×132+25×2.67+7×2.67
3、121×0.13+12.1×0.9-12×1.21 4、23.1×24-46.2×7
平方差公式因式分解
公式a-b=(a+b)(a-b).平方差因式分解形式特点:两项;都是2次方;异号.
一、没有系数的字母
1、a-b 2、x2-y2 3、-x2+y2
4、x4-y4
二、有系数的字母
1、4x2-9y2 2、16a2-9b2 3、 m2-0.01n2
4、 5、 6、
7、 8、36-x2 9、a2-b2
10、x2y2-z2 11、x4-81y4 12、-x2+(2x-3)2
三、有括号
1、4a2-(b+c)2 2、16(m-n)2-9(m+n)2 3、9x2-(x-2y) 2
4、(4x-3y)2-16y2 5、-4(x+2y)2+9(2x-y)2 6、(x+p)2-(x+q)2
7、-9x2+(-y)2 8、 9、
10、 11、(4x-5)-1 12、
四、有公因式的平方差
1、 2、 3、a5-a3
4、32a3-50ab2 5、ab-ab 6、12x-3y
7、x5y3-x3y5 8、
五、应用平方差解答
1、 2、(1-)(1-)(1-)…(1-)(1-)
3、已知:4m+n=90,2m-3n=10,求(m+2n)2-(3m-n)2的值.
4、已知x2-y2=-1 ,x+y=,则x-y为多少?
5、式子能被20~30之间的整数 整除.
6、 7、 8、
9、当为整数时,能被28整除吗?请说明理由.
完全平方因式分解
完全平方:三项;两个2次项.
判断是否是完全平方:
1、(1)a2-4a+4 (2)x2+4x+4y2 (3)4a2+2ab+b2
(4)a2-ab+b2 (5)x2-6x-9 (6)a2+a+0.25
一、简单完全平方
1、a2+6a+9 2、a2-6a+9 3、 4、
二、有系数的整体法
1、9x2-6x+1 2、4x2-12xy2+9y4 3、16x4-72x2y2+81y4 4、
5、 6、 7、
8、-4xy-4x2-y2
三、有括号的整体法
1、(x+y)2+4 - 4(x+y) 2、 3、
4、 5、(x+y)2-18(x+y)+81 6、4-12(x-y)+9(x-y)2
7、(x+y)2-18(x+y)+81 8、16-24(a-b)+9(a-b)2
四、有公因式的完全平方
1、4x3y+4x2y2+xy3 2、 3、a2+ab+b2
4、4mn2-4m2n-n3 5、
五、不是完全平方一般形式的,整理之后再分解
1、(x-y)2-4(x-y-1) 2、 3、(a2+b2)2-4a2b2
4、 5、(x2+x+1)(x2+x)+
应用完全平方因式分解解答实际问题
1、是一个完全平方式,那么之值为( )
2、( ) =
3、已知求的值.
4、若 x2-6xy+9y2=0,则 的值为多少?
5、已知:x2+4xy=3,2xy+9y2=1.则x+3y的值为多少?
6、若y2-8y+m-1是完全平方式,则m=( )
7、已知2a-b=3,求-8a2+8ab-2b2 的值
8、已知x+y=,xy=,求x3y+2x2y2+xy3的值
9、已知x2+y2+2x-6y+10=0,求x、y的值.
10、已知矩形的周长为28cm,两边长为x、y,且x、y满足x2(x+y)-y2(x+y)=0,求该矩形的面积.
一.分组分解练习
2. 3.
4.1-a2+2ab-b2 5.1-a2-b2-2ab
6.x2+2xy+y2-1 7.x2-2xy+y2-1
8.x2-2xy+y2-z2 9.
10. 11.
12.x2 - 4y2 +x + 2y 13.
14. 15.ax-a+bx-b
16.a2-b2-a+b 17.4a2-b2+2a-b
二.综合训练
1. 2. 997 2– 9
3.
4. 若是完全平方式,求的值.
5.已知求的值.
6.已知x+2y=,x-y= ,求x2+xy-2y2 的值.
7.已知a+b=2,求的值.
8.已知:a=10000,b=9999,求a2+b2-2ab-6a+6b+9的值.
9.若,求的最小值.
10.已知求的值.
11. 已知a, b, c是△ABC的三条边长,当 b2+2ab = c2+2ac时,试判断△ABC属于哪一类三角形
12. 求证:对于任何自然数n ,的值都能被6整除.
13.若a、b、c为△ABC的三边,且满足a2+b2+c2-ab-bc-ca=0.探索△ABC的形状,并说明理由.
14.分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).
15.分解因式4x2-4xy+y2+6x-3y-10.
15. 有两个孩子的年龄分别为x、y岁,已知x+ xy=99, 试求这两个孩子的年龄.
看了 总是搞混,记了公式这个忘了这...的网友还看了以下:
An=(1/2)A(n-1)+(1/2^n),请用待定系数法构造成一个等比数列,不用解只是一个大题 2020-04-27 …
怎么学习英语??我的英语水平不是很好,看还行将就能明白意思,但是生活中想说的时候说不出来,即使说出 2020-05-13 …
读书伴我成长演讲稿不超过三分钟10+5+()看能力了 2020-06-18 …
六年级语文问题发表自己的看法放学的时候,杨琳不小心摔了一跤,花裙子划破一个口子,回到家里,她对妈妈 2020-07-07 …
在数列an中,a1=2,a(n+1)=4an-3n+1,求证数列a(n)-n是等比数列,用待定系数 2020-08-03 …
化学的万能配平法如何解方程fe2o3+co高温fe+co2如何用万能配平法配平,我看书本上设对Fe来 2020-11-07 …
学高中地理主要学会看地图,可怎么才能学会啊?高中的地理地图刚学会看一张,可当它换了种角度,换了种方式 2020-11-15 …
Thechildnodded,apparentlycontentwiththepromise.省略语 2020-11-26 …
能不能帮我写份英文的请假条?(紧急)之前在公司请假,去看了医生但又遗失了请假条请假条需要写上请假的日 2020-12-14 …
英语学习跟不上怎么办?现在该上初三了,英语烂得一塌糊涂,初一还可以初二几乎连单词都没背过,一看课文大 2021-01-31 …