早教吧 育儿知识 作业答案 考试题库 百科 知识分享

将号码分别为1,2,3,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球,号码为a,放回后乙再摸出一个球,号码为b,则使不等式a-2b+10>0成

题目详情
将号码分别为1,2,3,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球,号码为a,放回后乙再摸出一个球,号码为b,则使不等式a-2b+10>0成立的事件发生的概率为(  )
A.
52
81
B.
59
81
C.
60
81
D.
61
81
▼优质解答
答案和解析
由题意知本题是一个等可能事件的概率,
试验发生包含的事件是两次分别从袋中摸球,共有9×9=81种结果,
满足条件的事件是使不等式a-2b+10>0成立的,即2b-a<10
当b=1,2,3,4,5时,a有9种结果,共有45种结果,
当b=6时,a有7种结果
当b=7时,a有5种结果
当b=8时,a有3种结果
当b=9时,a有1种结果
∴共有45+7+5+3+1=61种结果,
∴所求的概率是
61
81

故选D.
看了将号码分别为1,2,3,…,9...的网友还看了以下: