早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于点D.(1)如图1,过点C作CF⊥AD于F,延长CF交AB于点E.联结DE.①说明AE=AC的理由;②说明BE=DE的理由;(2)如图2,过点B作直线BM⊥AD交AD延长线于

题目详情
在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于点D.

(1)如图1,过点C作 CF⊥AD于F,延长CF交AB于点E.联结DE.
①说明AE=AC的理由;
②说明BE=DE的理由;
(2)如图2,过点B作直线BM⊥AD交AD延长线于M,交AC延长线于点N.说明CD=CN的理由.
▼优质解答
答案和解析
(1)①∵AD平分∠BAC,
∴∠EAD=∠CAD,
∵CF⊥AD,
∴∠AFE=∠AFC=90°,
在△AEF和△ACF中,
∠EAD=∠CAD
AD=AD
∠AFE=∠AFC

∴△AEF≌△ACF(ASA),
∴AE=AC;
②在△AED和△ACD中,
AE=AC
∠EAD=∠CAD
AD=AD

∴△AED≌△ACD(SAS),
∴∠AED=∠ACB
∵∠ACB=2∠B,
∴∠AED=2∠B,
又∵∠AED=∠B+∠EDB,
∴∠B=∠EDB,
∴BE=DE;

(2)连接DN,易证△ABM≌△ANM,
所以AB=AN,
在△ABD和△AND中,
AB=AN
∠EAD=∠CAD
AD=AD

∴△ABD≌△AND(SAS),
∴∠ABD=∠AND,
∵∠ACB=2∠B,即∠ACB=2∠ABD,
∴∠ACB=2∠AND,
又∵∠ACB=∠CDN+∠AND,
∴∠CDN=∠AND,
∴CD=CN.