早教吧作业答案频道 -->其他-->
(2013•河池)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(2)如图(2),已知AD=6,求四边形AFDC的面
题目详情
(2013•河池)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.
(1)求证:△ABD≌△FBC;
(2)如图(2),已知AD=6,求四边形AFDC的面积;
(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2.在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).
(1)求证:△ABD≌△FBC;
(2)如图(2),已知AD=6,求四边形AFDC的面积;
(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2.在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).
▼优质解答
答案和解析
(1)∵四边形ABFG、BCED是正方形,
∴AB=FB,CB=DB,∠ABF=∠CBD=90°,
∴∠ABF+∠ABC=∠CBD+∠ABC,
即∠ABD=∠CBF,
在△ABD和△FBC中,
,
∴△ABD≌△FBC(SAS);
(2)连接FD,设CF与AB交于点N,
∵△ABD≌△FBC,
∴AD=FC,∠BAD=∠BFC,
∴∠AMF=180°-∠BAD-∠CNA=180°-(∠BFC+∠BNF)=180°-90°=90°,
∴AD⊥CF,
∵AD=6,
∴FC=AD=6,
∴S四边形AFDC=S△ACD+S△ACF+S△DMF-S△ACM,
=
AD•CM+
CF•AM+
DM•FM-
AM•CM,
=3CM+3AM+
(6-AM)(6-CM)-
AM•CM,
=18;
(3)∵在△ABC中,设BC=a=3,AC=b=2,AB=c,
∴a-b<c<a+b,即1<c<5,
∴1<c2<25,即1<a2+b2+k=13+k<25,
解得:-12<k<12.
∴AB=FB,CB=DB,∠ABF=∠CBD=90°,
∴∠ABF+∠ABC=∠CBD+∠ABC,
即∠ABD=∠CBF,
在△ABD和△FBC中,
|
∴△ABD≌△FBC(SAS);
(2)连接FD,设CF与AB交于点N,
∵△ABD≌△FBC,
∴AD=FC,∠BAD=∠BFC,
∴∠AMF=180°-∠BAD-∠CNA=180°-(∠BFC+∠BNF)=180°-90°=90°,
∴AD⊥CF,
∵AD=6,
∴FC=AD=6,
∴S四边形AFDC=S△ACD+S△ACF+S△DMF-S△ACM,
=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
=3CM+3AM+
1 |
2 |
1 |
2 |
=18;
(3)∵在△ABC中,设BC=a=3,AC=b=2,AB=c,
∴a-b<c<a+b,即1<c<5,
∴1<c2<25,即1<a2+b2+k=13+k<25,
解得:-12<k<12.
看了(2013•河池)如图(1),...的网友还看了以下:
已知a(a-1)+(b-a的二次方)=负7,求(2分之a的平方+b的平方)-ab的值a(a-1)+ 2020-05-15 …
定义集合A*B={x|x∈A且x不属于B},若A={1,3,5,7},B={2,3,5},则: ( 2020-05-15 …
1、已知a,b,c互不相等求2a-b-c/(a-b)(b-c)+2b-c-a/(b-c)(b-a) 2020-05-16 …
A∩A=?A∩ø=?A∩B=?B∩A=?A∪A=?A∪ø=?A∪B=?B∪A=?A∩A=A∩ø=A 2020-06-12 …
因式分解公式,请尽可能全面我需要的形式平方差公式:a^2-b^2=(a+b)(a-b); 完全平方 2020-06-27 …
对于两个整数a,b,有a×b=(a+b)a,a+b=a×b+1,求(-2)×(-5)+(-4)对于 2020-07-14 …
集合AB把集合{(a,b)|a属于A,b属于B}记作A×B,已知c={a}D-{1、2、3}求C× 2020-07-30 …
实数的乘法运算与向量的数量积运算类比,不成立的运算律是()。A.a×b=b×a类比a→⋅b→=b→ 2020-07-31 …
数学绝对值不等式|a|-|b|≤|a±b|≤|a|+|b|中的±要怎么理解|a|-|b|≤|a±b 2020-08-03 …
a=ba>0b>0aa=ab(两边同乘a)aa-bb=ab-bb(两边同时减b乘b)(a+b)(a- 2020-11-01 …